scholarly journals A Strain Distribution Sensing System for Bone-Implant Interfaces Based on Digital Speckle Pattern Interferometry

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 365 ◽  
Author(s):  
Ping Zhong ◽  
Zhisong Li ◽  
Huazheng Yang ◽  
Xin Tang ◽  
Guoxing He

This paper aims to provide an effective measurement method for the distribution of deformations and strains focusing on the response to external loading of bone-implant interfaces. To achieve this target, a novel speckle interference imaging method is proposed by introducing phosphate buffer saline medium, in which the samples were completely placed into a phosphate buffer saline solution medium to stable the water molecules. The stability of interferometry imaging is analyzed by using the concepts of co-occurrence matrix and moment of inertia. A series of experiments to measure load-driven deformation and strain in the bone-implant interface was carried out, and the experiments results were analyzed and discussed. It shows that the proposed method is feasible and effective for the no-contact strain measurements of biomaterials in a physiological condition. The proposed strain distribution sensing system will contribute to evaluating computational simulations and improving selection of implant designs and materials.

2010 ◽  
Vol 36 (1) ◽  
pp. 51-56
Author(s):  
Kazuhiro Asami ◽  
Akira Inaba ◽  
Kazuhisa Ohtaguchi

2012 ◽  
Vol 510 ◽  
pp. 667-672
Author(s):  
Jia Lin Zhou ◽  
Chen Gang Pan ◽  
Xiao Yong Zhang

This article established 3D FE model of dual-radius arc finishing groove and tangent expansion angle finishing groove using ANSYS / LS-DYNA software for Wuhan Iron and Steel plant Ф16 hot continuous bar, and analyzed metal flow pattern, stress and strain distribution of two types finishing grooves. The results show that surface stress and strain distribution of dual-radius arc finishing groove have better uniform than them of tangent expansion angle finishing groove, and dual-radius arc finishing groove ensures the stability of the rolled piece in finishing groove, improve the dimensional accuracy and surface quality of rolled finishing product.


2010 ◽  
Vol 56 (1(1)) ◽  
pp. 338-343
Author(s):  
Seung-Kyu Park ◽  
Sung-Hoon Baik ◽  
Young-Suk Kim ◽  
Yong-Moo Cheong ◽  
Hyung-Ki Cha

Author(s):  
Ievgen Levadnyi ◽  
Jan Awrejcewicz ◽  
Yan Zhang ◽  
Yaodong Gu

Bone fracture, formation and adaptation are related to mechanical strains in bone. Assessing bone stiffness and strain distribution under different loading conditions may help predict diseases and improve surgical results by determining the best conditions for long-term functioning of bone-implant systems. In this study, an experimentally wide range of loading conditions (56) was used to cover the directional range spanned by the hip joint force. Loads for different stance configurations were applied to composite femurs and assessed in a material testing machine. The experimental analysis provides a better understanding of the influence of the bone inclination angle in the frontal and sagittal planes on strain distribution and stiffness. The results show that the surface strain magnitude and stiffness vary significantly under different loading conditions. For the axial compression, maximal bending is observed at the mid-shaft, and bone stiffness is also maximal. The increased inclination leads to decreased stiffness and increased magnitude of maximum strain at the distal end of the femur. For comparative analysis of results, a three-dimensional, finite element model of the femur was used. To validate the finite element model, strain gauges and digital image correlation system were employed. During validation of the model, regression analysis indicated robust agreement between the measured and predicted strains, with high correlation coefficient and low root-mean-square error of the estimate. The results of stiffnesses obtained from multi-loading conditions experiments were qualitatively compared with results obtained from a finite element analysis of the validated model of femur with the same multi-loading conditions. When the obtained numerical results are qualitatively compared with experimental ones, similarities can be noted. The developed finite element model of femur may be used as a promising tool to estimate proximal femur strength and identify the best conditions for long-term functioning of the bone-implant system in future study.


2020 ◽  
Vol 10 (11) ◽  
pp. 4008
Author(s):  
Mahdi Faghihnasiri ◽  
Vahid Najafi ◽  
Farzaneh Shayeganfar ◽  
Ali Ramazani

Current research aims to investigate the mechanical properties of rare earth perovskite ferrites (RFeO3, R = La, Eu, Gd) utilizing density functional theory (DFT) calculations. Using the revised Perdew–Burke–Ernzerhof approximation for solids (PBEsol) approximation, the elastic constants, bulk, Young’s, and shear modulus, Poisson’s ratio, and anisotropic properties are calculated. The quantum theory of atoms in molecules (QTAIM) is employed to analyze the stability of chemical bonds in the structures subjected to an external loading. Based on these calculations, Fe-O and R-O bonds can be considered as nearly ionic, which is due to the large difference in electronegativity of R and Fe with O. Additionally, our results reveal that the charge density values of the Fe-O bonds in both structures remain largely outside of the ionic range. Finally, the mechanical response of LaFeO3, EuFeO3, and GdFeO3 compounds to various cubic strains is investigated. The results show that in RFeO3 by increasing the radius of the lanthanide atom, the mechanical properties of the material including Young’s and bulk modulus increase.


Sign in / Sign up

Export Citation Format

Share Document