scholarly journals Connected Vehicle as a Mobile Sensor for Real Time Queue Length at Signalized Intersections

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2059 ◽  
Author(s):  
Kai Gao ◽  
Farong Han ◽  
Pingping Dong ◽  
Naixue Xiong ◽  
Ronghua Du

With the development of intelligent transportation system (ITS) and vehicle to X (V2X), the connected vehicle is capable of sensing a great deal of useful traffic information, such as queue length at intersections. Aiming to solve the problem of existing models’ complexity and information redundancy, this paper proposes a queue length sensing model based on V2X technology, which consists of two sub-models based on shockwave sensing and back propagation (BP) neural network sensing. First, the model obtains state information of the connected vehicles and analyzes the formation process of the queue, and then it calculates the velocity of the shockwave to predict the queue length of the subsequent unconnected vehicles. Then, the neural network is trained with historical connected vehicle data, and a sub-model based on the BP neural network is established to predict the real-time queue length. Finally, the final queue length at the intersection is determined by combining the sub-models by variable weight. Simulation results show that the sensing accuracy of the combined model is proportional to the penetration rate of connected vehicles, and sensing of queue length can be achieved even in low penetration rate environments. In mixed traffic environments of connected vehicles and unconnected vehicles, the queuing length sensing model proposed in this paper has higher performance than the probability distribution (PD) model when the penetration rate is low, and it has an almost equivalent performance with higher penetration rate while the penetration rate is not needed. The proposed sensing model is more applicable for mixed traffic scenarios with much looser conditions.

Author(s):  
Yi Wang ◽  
Zhihong Yao ◽  
Yang Cheng ◽  
Yangsheng Jiang ◽  
Bin Ran

Queue length estimation is of great importance for measuring traffic signal performance and optimizing traffic signal timing plans. With the development of connected vehicle (CV) technology, using mobile CV data instead of fixed detector data to estimate queue length has become an important research topic. This study focuses on real-time queue length estimation for an isolated intersection with CV data. A Kalman filtering method is proposed to estimate the queue length in real time using traffic signal timing and real-time traffic flow parameters (i.e., saturated flow rate, traffic volume, and penetration rate), which are estimated using CV trajectories data. A simulation intersection was built and calibrated using field data to evaluate the performance of the proposed method and the benchmark method. Results show that when the CV penetration rate is at 30%, the average values of mean absolute errors, mean absolute percentage errors, and root mean square errors are just 1.6 vehicles, 20.9%, and 2.5 vehicles, respectively. The performance of the proposed model is also better than the benchmark method when the penetration rate of CVs is higher than 20%, which proves the validity of the proposed method. Furthermore, sensitivity analysis indicates that the proposed method requires a high penetration rate of at least 30%.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3864
Author(s):  
Tarek Ghoul ◽  
Tarek Sayed

Speed advisories are used on highways to inform vehicles of upcoming changes in traffic conditions and apply a variable speed limit to reduce traffic conflicts and delays. This study applies a similar concept to intersections with respect to connected vehicles to provide dynamic speed advisories in real-time that guide vehicles towards an optimum speed. Real-time safety evaluation models for signalized intersections that depend on dynamic traffic parameters such as traffic volume and shock wave characteristics were used for this purpose. The proposed algorithm incorporates a rule-based approach alongside a Deep Deterministic Policy Gradient reinforcement learning technique (DDPG) to assign ideal speeds for connected vehicles at intersections and improve safety. The system was tested on two intersections using real-world data and yielded an average reduction in traffic conflicts ranging from 9% to 23%. Further analysis was performed to show that the algorithm yields tangible results even at lower market penetration rates (MPR). The algorithm was tested on the same intersection with different traffic volume conditions as well as on another intersection with different physical constraints and characteristics. The proposed algorithm provides a low-cost approach that is not computationally intensive and works towards optimizing for safety by reducing rear-end traffic conflicts.


2000 ◽  
Author(s):  
David Nielsen ◽  
Ranga Pitchumani

Abstract Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.


2012 ◽  
Vol 605-607 ◽  
pp. 2366-2369 ◽  
Author(s):  
Yao Wang ◽  
Dan Zheng ◽  
Shi Min Luo ◽  
Dong Ming Zhan ◽  
Peng Nie

Based on analyzing the principle of BP neural network and time sequence characteristics of railway passenger flow, the forecast model of railway short-term passenger flow based on BP neural network was established. This paper mainly researches on fluctuation characteristics and short-time forecast of holiday passenger flow. Through analysis of passenger flow and then be used in passenger flow forecasting in order to guide the transport organization program especially the train plan of extra passenger train. And the result shows the forecast model based on BP neural network has a good effect on railway passenger flow prediction.


Sign in / Sign up

Export Citation Format

Share Document