scholarly journals A Rail Fault Diagnosis Method Based on Quartic C2 Hermite Improved Empirical Mode Decomposition Algorithm

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3300 ◽  
Author(s):  
Liu ◽  
Qin ◽  
Liu

For compound fault detection of high-speed rail vibration signals, which presents a difficult problem, an early fault diagnosis method of an improved empirical mode decomposition (EMD) algorithm based on quartic C2 Hermite interpolation is presented. First, the quartic C2 Hermite interpolation improved EMD algorithm is used to decompose the original signal, and the intrinsic mode function (IMF) components are obtained. Second, singular value decomposition for the IMF components is performed to determine the principal components of the signal. Then, the signal is reconstructed and the kurtosis and approximate entropy values are calculated as the eigenvalues of fault diagnosis. Finally, fault diagnosis is executed based on the support vector machine (SVM). This method is applied for the fault diagnosis of high-speed rails, and experimental results show that the method presented in this paper is superior to the traditional EMD algorithm and greatly improves the accuracy of fault diagnosis.

2020 ◽  
Vol 26 (23-24) ◽  
pp. 2230-2242
Author(s):  
Ying Shi ◽  
Cai Yi ◽  
Jianhui Lin ◽  
Zhe Zhuang ◽  
Senhua Lai

In this article, a fault diagnosis approach for a pantograph is developed with collected vibration data from a test rig. Ensemble empirical mode decomposition is used to decompose the signals to get intrinsic mode function, and four kinds of entropies (permu1tation entropy, approximate entropy, sample entropy, and fuzzy entropy) reflecting the working state are extracted as the inputs of the support vector machine based on particle swarm optimization algorithm support vector machine. The effect of data length, embedded dimension, and other parameters on calculation of the entropy value has also been studied. Multiple feature ranking criteria are used to select the useful features and improve the fault diagnosis accuracy of certain measurement points. Experimental results on pantograph vibration analysis have then confirmed that the proposed method provides an effective measure for pantograph diagnosis.


Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


Author(s):  
Yaguo Lei ◽  
Zongyao Liu ◽  
Julien Ouazri ◽  
Jing Lin

Ensemble empirical mode decomposition (EEMD) represents a valuable aid in empirical mode decomposition (EMD) and has been widely used in fault diagnosis of rolling element bearings. However, the intrinsic mode functions (IMFs) generated by EEMD often contain residual noise. In addition, adding different white Gaussian noise to the signal to be analyzed probably produces a different number of IMFs, and different number of IMFs makes difficult the averaging. To alleviate these two drawbacks, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was previously presented. Utilizing the advantages of CEEMDAN in extracting weak characteristics from noisy signals, a new fault diagnosis method of rolling element bearings based on CEEMDAN is proposed. With this method, a particular noise is added at each stage and after each IMF extraction, a unique residue is computed. In this way, this method solves the problem of the final averaging and obtains IMFs with less noise. A simulated signal is used to illustrate the effectiveness of the proposed method, and the decomposition results show that the method obtains more accurate IMFs than the EEMD. To further demonstrate the proposed method, it is applied to fault diagnosis of locomotive rolling element bearings. The diagnosis results prove that the method based on CEEMDAN may reveal the fault characteristic information of rolling element bearings better.


2013 ◽  
Vol 694-697 ◽  
pp. 1160-1166
Author(s):  
Ke Heng Zhu ◽  
Xi Geng Song ◽  
Dong Xin Xue

This paper presents a fault diagnosis method of roller bearings based on intrinsic mode function (IMF) kurtosis and support vector machine (SVM). In order to improve the performance of kurtosis under strong levels of background noise, the empirical mode decomposition (EMD) method is used to decompose the bearing vibration signals into a number of IMFs. The IMF kurtosis is then calculated because of its sensitivity of impulses caused by faults. Subsequently, the IMF kurtosis values are treated as fault feature vectors and input into SVM for fault classification. The experimental results show the effectiveness of the proposed approach in roller bearing fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document