scholarly journals Artifacts in Simultaneous hdEEG/fMRI Imaging: A Nonlinear Dimensionality Reduction Approach

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4454 ◽  
Author(s):  
Marek Piorecky ◽  
Vlastimil Koudelka ◽  
Jan Strobl ◽  
Martin Brunovsky ◽  
Vladimir Krajca

Simultaneous recordings of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) are at the forefront of technologies of interest to physicians and scientists because they combine the benefits of both modalities—better time resolution (hdEEG) and space resolution (fMRI). However, EEG measurements in the scanner contain an electromagnetic field that is induced in leads as a result of gradient switching slight head movements and vibrations, and it is corrupted by changes in the measured potential because of the Hall phenomenon. The aim of this study is to design and test a methodology for inspecting hidden EEG structures with respect to artifacts. We propose a top-down strategy to obtain additional information that is not visible in a single recording. The time-domain independent component analysis algorithm was employed to obtain independent components and spatial weights. A nonlinear dimension reduction technique t-distributed stochastic neighbor embedding was used to create low-dimensional space, which was then partitioned using the density-based spatial clustering of applications with noise (DBSCAN). The relationships between the found data structure and the used criteria were investigated. As a result, we were able to extract information from the data structure regarding electrooculographic, electrocardiographic, electromyographic and gradient artifacts. This new methodology could facilitate the identification of artifacts and their residues from simultaneous EEG in fMRI.

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1017
Author(s):  
Sheng-Shiung Wu ◽  
Sing-Jie Jong ◽  
Kai Hu ◽  
Jiann-Ming Wu

This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approximating function consisting of adaptable built-in parameters is optimized subject to given training observations by the proposed learning process, and verified for transformation of novel testing observations to images in the low-dimensional output space. Optimized internal representations sketch graph-organized supports of distributed data clusters and their representative images in the output space. On the basis, the approximating function is able to operate for testing without reserving original massive training observations. The neural approximating model contains multiple modules. Each activates a non-zero output for mapping in response to an input inside its correspondent local support. Graph-organized data supports have lateral interconnections for representing neighboring relations, inferring the minimal path between centroids of any two data supports, and proposing distance constraints for mapping all centroids to images in the output space. Following the distance-preserving principle, this work proposes Levenberg-Marquardt learning for optimizing images of centroids in the output space subject to given distance constraints, and further develops local embedding constraints for mapping during execution phase. Numerical simulations show the proposed neural approximation effective and reliable for nonlinear dimensionality reduction mapping.


2020 ◽  
Author(s):  
Alberto García-González ◽  
Antonio Huerta ◽  
Sergio Zlotnik ◽  
Pedro Díez

Abstract Methodologies for multidimensionality reduction aim at discovering low-dimensional manifolds where data ranges. Principal Component Analysis (PCA) is very effective if data have linear structure. But fails in identifying a possible dimensionality reduction if data belong to a nonlinear low-dimensional manifold. For nonlinear dimensionality reduction, kernel Principal Component Analysis (kPCA) is appreciated because of its simplicity and ease implementation. The paper provides a concise review of PCA and kPCA main ideas, trying to collect in a single document aspects that are often dispersed. Moreover, a strategy to map back the reduced dimension into the original high dimensional space is also devised, based on the minimization of a discrepancy functional.


NeuroImage ◽  
2021 ◽  
pp. 118200
Author(s):  
Sayan Ghosal ◽  
Qiang Chen ◽  
Giulio Pergola ◽  
Aaron L. Goldman ◽  
William Ulrich ◽  
...  

2018 ◽  
Vol 37 (10) ◽  
pp. 1233-1252 ◽  
Author(s):  
Jonathan Hoff ◽  
Alireza Ramezani ◽  
Soon-Jo Chung ◽  
Seth Hutchinson

In this article, we present methods to optimize the design and flight characteristics of a biologically inspired bat-like robot. In previous, work we have designed the topological structure for the wing kinematics of this robot; here we present methods to optimize the geometry of this structure, and to compute actuator trajectories such that its wingbeat pattern closely matches biological counterparts. Our approach is motivated by recent studies on biological bat flight that have shown that the salient aspects of wing motion can be accurately represented in a low-dimensional space. Although bats have over 40 degrees of freedom (DoFs), our robot possesses several biologically meaningful morphing specializations. We use principal component analysis (PCA) to characterize the two most dominant modes of biological bat flight kinematics, and we optimize our robot’s parametric kinematics to mimic these. The method yields a robot that is reduced from five degrees of actuation (DoAs) to just three, and that actively folds its wings within a wingbeat period. As a result of mimicking synergies, the robot produces an average net lift improvesment of 89% over the same robot when its wings cannot fold.


2014 ◽  
Vol 30 (2) ◽  
pp. 463-475 ◽  
Author(s):  
Masaki Mitsuhiro ◽  
Hiroshi Yadohisa

2013 ◽  
Vol 203-204 ◽  
pp. 42-47
Author(s):  
Albert Prodan ◽  
Herman J.P. van Midden ◽  
Erik Zupanič ◽  
Rok Žitko

Charge density wave (CDW) ordering in NbSe3 and the structurally related quasi one-dimensional compounds is reconsidered. Since the modulated ground state is characterized by unstable nano-domains, the structural information obtained from diffraction experiments is to be supplemented by some additional information from a method, able to reveal details on a unit cell level. Low-temperature (LT) scanning tunneling microscopy (STM) can resolve both, the local atomic structure and the superimposed charge density modulation. It is shown that the established model for NbSe3 with two incommensurate (IC) modes, q1 = (0,0.241,0) and q2 = (0.5,0.260,0.5), locked in at T1=144K and T2=59K and separately confined to two of the three available types of bi-capped trigonal prismatic (BCTP) columns, must be modified. The alternative explanation is based on the existence of modulated layered nano-domains and is in good accord with the available LT STM results. These confirm i.a. the presence of both IC modes above the lower CDW transition temperature. Two BCTP columns, belonging to a symmetry-related pair, are as a rule alternatively modulated by the two modes. Such pairs of columns are ordered into unstable layered nano-domains, whose q1 and q2 sub-layers are easily interchanged. The mutually interchangeable sections of the two unstable IC modes keep a temperature dependent long-range ordering. Both modes can formally be replaced by a single highly inharmonic long-period commensurate CDW.


Author(s):  
Lars Kegel ◽  
Claudio Hartmann ◽  
Maik Thiele ◽  
Wolfgang Lehner

AbstractProcessing and analyzing time series datasets have become a central issue in many domains requiring data management systems to support time series as a native data type. A core access primitive of time series is matching, which requires efficient algorithms on-top of appropriate representations like the symbolic aggregate approximation (SAX) representing the current state of the art. This technique reduces a time series to a low-dimensional space by segmenting it and discretizing each segment into a small symbolic alphabet. Unfortunately, SAX ignores the deterministic behavior of time series such as cyclical repeating patterns or a trend component affecting all segments, which may lead to a sub-optimal representation accuracy. We therefore introduce a novel season- and a trend-aware symbolic approximation and demonstrate an improved representation accuracy without increasing the memory footprint. Most importantly, our techniques also enable a more efficient time series matching by providing a match up to three orders of magnitude faster than SAX.


2020 ◽  
Author(s):  
Jessica Dafflon ◽  
Pedro F. Da Costa ◽  
František Váša ◽  
Ricardo Pio Monti ◽  
Danilo Bzdok ◽  
...  

AbstractFor most neuroimaging questions the huge range of possible analytic choices leads to the possibility that conclusions from any single analytic approach may be misleading. Examples of possible choices include the motion regression approach used and smoothing and threshold factors applied during the processing pipeline. Although it is possible to perform a multiverse analysis that evaluates all possible analytic choices, this can be computationally challenging and repeated sequential analyses on the same data can compromise inferential and predictive power. Here, we establish how active learning on a low-dimensional space that captures the inter-relationships between analysis approaches can be used to efficiently approximate the whole multiverse of analyses. This approach balances the benefits of a multiverse analysis without the accompanying cost to statistical power, computational power and the integrity of inferences. We illustrate this approach with a functional MRI dataset of functional connectivity across adolescence, demonstrating how a multiverse of graph theoretic and simple pre-processing steps can be efficiently navigated using active learning. Our study shows how this approach can identify the subset of analysis techniques (i.e., pipelines) which are best able to predict participants’ ages, as well as allowing the performance of different approaches to be quantified.


Author(s):  
Yang Fang ◽  
Xiang Zhao ◽  
Zhen Tan

Network Embedding (NE) is an important method to learn the representations of network via a low-dimensional space. Conventional NE models focus on capturing the structure information and semantic information of vertices while neglecting such information for edges. In this work, we propose a novel NE model named BimoNet to capture both the structure and semantic information of edges. BimoNet is composed of two parts, i.e., the bi-mode embedding part and the deep neural network part. For bi-mode embedding part, the first mode named add-mode is used to express the entity-shared features of edges and the second mode named subtract-mode is employed to represent the entity-specific features of edges. These features actually reflect the semantic information. For deep neural network part, we firstly regard the edges in a network as nodes, and the vertices as links, which will not change the overall structure of the whole network. Then we take the nodes' adjacent matrix as the input of the deep neural network as it can obtain similar representations for nodes with similar structure. Afterwards, by jointly optimizing the objective function of these two parts, BimoNet could preserve both the semantic and structure information of edges. In experiments, we evaluate BimoNet on three real-world datasets and task of relation extraction, and BimoNet is demonstrated to outperform state-of-the-art baseline models consistently and significantly.


Sign in / Sign up

Export Citation Format

Share Document