scholarly journals Deep Active Learning for Surface Defect Detection

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1650 ◽  
Author(s):  
Xiaoming Lv ◽  
Fajie Duan ◽  
Jia-Jia Jiang ◽  
Xiao Fu ◽  
Lin Gan

Most of the current object detection approaches deliver competitive results with an assumption that a large number of labeled data are generally available and can be fed into a deep network at once. However, due to expensive labeling efforts, it is difficult to deploy the object detection systems into more complex and challenging real-world environments, especially for defect detection in real industries. In order to reduce the labeling efforts, this study proposes an active learning framework for defect detection. First, an Uncertainty Sampling is proposed to produce the candidate list for annotation. Uncertain images can provide more informative knowledge for the learning process. Then, an Average Margin method is designed to set the sampling scale for each defect category. In addition, an iterative pattern of training and selection is adopted to train an effective detection model. Extensive experiments demonstrate that the proposed method can render the required performance with fewer labeled data.

2018 ◽  
Vol 8 (9) ◽  
pp. 1678 ◽  
Author(s):  
Yiting Li ◽  
Haisong Huang ◽  
Qingsheng Xie ◽  
Liguo Yao ◽  
Qipeng Chen

This paper aims to achieve real-time and accurate detection of surface defects by using a deep learning method. For this purpose, the Single Shot MultiBox Detector (SSD) network was adopted as the meta structure and combined with the base convolution neural network (CNN) MobileNet into the MobileNet-SSD. Then, a detection method for surface defects was proposed based on the MobileNet-SSD. Specifically, the structure of the SSD was optimized without sacrificing its accuracy, and the network structure and parameters were adjusted to streamline the detection model. The proposed method was applied to the detection of typical defects like breaches, dents, burrs and abrasions on the sealing surface of a container in the filling line. The results show that our method can automatically detect surface defects more accurately and rapidly than lightweight network methods and traditional machine learning methods. The research results shed new light on defect detection in actual industrial scenarios.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1562 ◽  
Author(s):  
Xiaoming Lv ◽  
Fajie Duan ◽  
Jia-jia Jiang ◽  
Xiao Fu ◽  
Lin Gan

Metallic surface defect detection is an essential and necessary process to control the qualities of industrial products. However, due to the limited data scale and defect categories, existing defect datasets are generally unavailable for the deployment of the detection model. To address this problem, we contribute a new dataset called GC10-DET for large-scale metallic surface defect detection. The GC10-DET dataset has great challenges on defect categories, image number, and data scale. Besides, traditional detection approaches are poor in both efficiency and accuracy for the complex real-world environment. Thus, we also propose a novel end-to-end defect detection network (EDDN) based on the Single Shot MultiBox Detector. The EDDN model can deal with defects with different scales. Furthermore, a hard negative mining method is designed to alleviate the problem of data imbalance, while some data augmentation methods are adopted to enrich the training data for the expensive data collection problem. Finally, the extensive experiments on two datasets demonstrate that the proposed method is robust and can meet accuracy requirements for metallic defect detection.


2022 ◽  
Author(s):  
Dominik Martin ◽  
Simon Heinzel ◽  
Johannes Kunze Von Bischhoffshausen ◽  
Niklas Kühl

Author(s):  
Dr. Sanchari S ◽  
Tejashree V S ◽  
Ashit Chuphal ◽  
Shilpi Kumari

The purpose of the proposed work is to apply a deep learning technique to quickly and accurately detect surface faults. The Shot MultiBox Detector (SSD) network was chosen and fused with the convolution neural network (CNN) MobileNet to generate the MobileNet-SSD because of the meta structure. A surface defect detecting technique was then planned, mostly employing the MobileNet-SSD. The network topology and settings were changed to form the detection model since the SSD's structure was optimized without sacrificing accuracy. The proposed technique was utilized to detect common defects on a container's protection surface, such as breaches, dents, burrs, and abrasions, within the filling line. The results reveal that our method is more accurate and faster than lightweight network methods and classic machine learning methods at detecting surface faults. The findings add to our understanding of fault detection in real-world industrial settings.


Sign in / Sign up

Export Citation Format

Share Document