scholarly journals Effectiveness of Multidimensional Controllers Designated to Steering of the Motions of Ship at Low Speed

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3533
Author(s):  
Witold Gierusz ◽  
Monika Rybczak

The article described two full multidimensional controllers applied to steer a real vessel named ‘Blue Lady’ that is used by the Foundation for Safety of Navigation and Environment Protection at its training and research facility loacted at Silm lake in Poland. Both controllers were based on different approaches, but finally gave similar results. The first part describes the object to be controlled which is a training ship used for training of navigators in various conditions, areas and manoeuvres. This is followed by a short description of the theory for both controllers, Robust and Linear Matrix Inequalities (LMI). Next real time trials are described, which are 3 different manouvers for low velocities, executed by both LMI and Robust contrllers. In these trials ‘Blue Lady’ velocities, silhouete trajectory ans wind data are recorded. Finally the quality of work for both controllers is collected in two tables.

2018 ◽  
Vol 10 (10) ◽  
pp. 4-19
Author(s):  
Magomed G. GADZHIYEV ◽  
◽  
Misrikhan Sh. MISRIKHANOV ◽  
Vladimir N. RYABCHENKO ◽  
◽  
...  

Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


Author(s):  
Jeremy Nicola ◽  
Luc Jaulin

Linear matrix inequalities (LMIs) comprise a large class of convex constraints. Boxes, ellipsoids, and linear constraints can be represented by LMIs. The intersection of LMIs are also classified as LMIs. Interior-point methods are able to minimize or maximize any linear criterion of LMIs with complexity, which is polynomial regarding to the number of variables. As a consequence, as shown in this paper, it is possible to build optimal contractors for sets represented by LMIs. When solving a set of nonlinear constraints, one may extract from all constraints that are LMIs in order to build a single optimal LMI contractor. A combination of all contractors obtained for other non-LMI constraints can thus be performed up to the fixed point. The resulting propogation is shown to be more efficient than other conventional contractor-based approaches.


Sign in / Sign up

Export Citation Format

Share Document