scholarly journals C2DAN: An Improved Deep Adaptation Network with Domain Confusion and Classifier Adaptation

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3606
Author(s):  
Han Sun ◽  
Xinyi Chen ◽  
Ling Wang ◽  
Dong Liang ◽  
Ningzhong Liu ◽  
...  

Deep neural networks have been successfully applied in domain adaptation which uses the labeled data of source domain to supplement useful information for target domain. Deep Adaptation Network (DAN) is one of these efficient frameworks, it utilizes Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to align the feature distribution in a reproducing kernel Hilbert space. However, DAN does not perform very well in feature level transfer, and the assumption that source and target domain share classifiers is too strict in different adaptation scenarios. In this paper, we further improve the adaptability of DAN by incorporating Domain Confusion (DC) and Classifier Adaptation (CA). To achieve this, we propose a novel domain adaptation method named C2DAN. Our approach first enables Domain Confusion (DC) by using a domain discriminator for adversarial training. For Classifier Adaptation (CA), a residual block is added to the source domain classifier in order to learn the difference between source classifier and target classifier. Beyond validating our framework on the standard domain adaptation dataset office-31, we also introduce and evaluate on the Comprehensive Cars (CompCars) dataset, and the experiment results demonstrate the effectiveness of the proposed framework C2DAN.

Author(s):  
A. Paul ◽  
F. Rottensteiner ◽  
C. Heipke

Domain adaptation techniques in transfer learning try to reduce the amount of training data required for classification by adapting a classifier trained on samples from a source domain to a new data set (target domain) where the features may have different distributions. In this paper, we propose a new technique for domain adaptation based on logistic regression. Starting with a classifier trained on training data from the source domain, we iteratively include target domain samples for which class labels have been obtained from the current state of the classifier, while at the same time removing source domain samples. In each iteration the classifier is re-trained, so that the decision boundaries are slowly transferred to the distribution of the target features. To make the transfer procedure more robust we introduce weights as a function of distance from the decision boundary and a new way of regularisation. Our methodology is evaluated using a benchmark data set consisting of aerial images and digital surface models. The experimental results show that in the majority of cases our domain adaptation approach can lead to an improvement of the classification accuracy without additional training data, but also indicate remaining problems if the difference in the feature distributions becomes too large.


Author(s):  
A. Paul ◽  
F. Rottensteiner ◽  
C. Heipke

Domain adaptation techniques in transfer learning try to reduce the amount of training data required for classification by adapting a classifier trained on samples from a source domain to a new data set (target domain) where the features may have different distributions. In this paper, we propose a new technique for domain adaptation based on logistic regression. Starting with a classifier trained on training data from the source domain, we iteratively include target domain samples for which class labels have been obtained from the current state of the classifier, while at the same time removing source domain samples. In each iteration the classifier is re-trained, so that the decision boundaries are slowly transferred to the distribution of the target features. To make the transfer procedure more robust we introduce weights as a function of distance from the decision boundary and a new way of regularisation. Our methodology is evaluated using a benchmark data set consisting of aerial images and digital surface models. The experimental results show that in the majority of cases our domain adaptation approach can lead to an improvement of the classification accuracy without additional training data, but also indicate remaining problems if the difference in the feature distributions becomes too large.


Author(s):  
Zechang Li ◽  
Yuxuan Lai ◽  
Yansong Feng ◽  
Dongyan Zhao

Recently, semantic parsing has attracted much attention in the community. Although many neural modeling efforts have greatly improved the performance, it still suffers from the data scarcity issue. In this paper, we propose a novel semantic parser for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain. Our semantic parser benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages, i.e., focusing on domain invariant and domain specific information, respectively. In the coarse stage, our novel domain discrimination component and domain relevance attention encourage the model to learn transferable domain general structures. In the fine stage, the model is guided to concentrate on domain related details. Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies. Additionally, we show that our model can well exploit limited target data to capture the difference between the source and target domain, even when the target domain has far fewer training instances.


Author(s):  
Xiao Ding ◽  
Bibo Cai ◽  
Ting Liu ◽  
Qiankun Shi

Identifying user consumption intention from social media is of great interests to downstream applications. Since such task is domain-dependent, deep neural networks have been applied to learn transferable features for adapting models from a source domain to a target domain. A basic idea to solve this problem is reducing the distribution difference between the source domain and the target domain such that the transfer error can be bounded. However, the feature transferability drops dramatically in higher layers of deep neural networks with increasing domain discrepancy. Hence, previous work has to use a few target domain annotated data to train domain-specific layers. In this paper, we propose a deep transfer learning framework for consumption intention identification, to reduce the data bias and enhance the transferability in domain-specific layers. In our framework, the representation of the domain-specific layer is mapped to a reproducing kernel Hilbert space, where the mean embeddings of different domain distributions can be explicitly matched. By using an optimal tree kernel method for measuring the mean embedding matching, the domain discrepancy can be effectively reduced. The framework can learn transferable features in a completely unsupervised manner with statistical guarantees. Experimental results on five different domain datasets show that our approach dramatically outperforms state-of-the-art baselines, and it is general enough to be applied to more scenarios. The source code and datasets can be found at http://ir.hit.edu.cn/$\scriptsize{\sim}$xding/index\_english.htm.


2020 ◽  
Vol 34 (04) ◽  
pp. 4028-4035 ◽  
Author(s):  
Aditya Grover ◽  
Christopher Chute ◽  
Rui Shu ◽  
Zhangjie Cao ◽  
Stefano Ermon

Given datasets from multiple domains, a key challenge is to efficiently exploit these data sources for modeling a target domain. Variants of this problem have been studied in many contexts, such as cross-domain translation and domain adaptation. We propose AlignFlow, a generative modeling framework that models each domain via a normalizing flow. The use of normalizing flows allows for a) flexibility in specifying learning objectives via adversarial training, maximum likelihood estimation, or a hybrid of the two methods; and b) learning and exact inference of a shared representation in the latent space of the generative model. We derive a uniform set of conditions under which AlignFlow is marginally-consistent for the different learning objectives. Furthermore, we show that AlignFlow guarantees exact cycle consistency in mapping datapoints from a source domain to target and back to the source domain. Empirically, AlignFlow outperforms relevant baselines on image-to-image translation and unsupervised domain adaptation and can be used to simultaneously interpolate across the various domains using the learned representation.


Author(s):  
Seiichi Kuroki ◽  
Nontawat Charoenphakdee ◽  
Han Bao ◽  
Junya Honda ◽  
Issei Sato ◽  
...  

Unsupervised domain adaptation is the problem setting where data generating distributions in the source and target domains are different and labels in the target domain are unavailable. An important question in unsupervised domain adaptation is how to measure the difference between the source and target domains. Existing discrepancy measures for unsupervised domain adaptation either require high computation costs or have no theoretical guarantee. To mitigate these problems, this paper proposes a novel discrepancy measure called source-guided discrepancy (S-disc), which exploits labels in the source domain unlike the existing ones. As a consequence, S-disc can be computed efficiently with a finitesample convergence guarantee. In addition, it is shown that S-disc can provide a tighter generalization error bound than the one based on an existing discrepancy measure. Finally, experimental results demonstrate the advantages of S-disc over the existing discrepancy measures.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 224
Author(s):  
Hui Tao ◽  
Jun He ◽  
Quanjie Cao ◽  
Lei Zhang

Domain adaptation is critical to transfer the invaluable source domain knowledge to the target domain. In this paper, for a particular visual attention model, saying hard attention, we consider to adapt the learned hard attention to the unlabeled target domain. To tackle this kind of hard attention adaptation, a novel adversarial reward strategy is proposed to train the policy of the target domain agent. In this adversarial training framework, the target domain agent competes with the discriminator which takes the attention features generated from the both domain agents as input and tries its best to distinguish them, and thus the target domain policy is learned to align the local attention feature to its source domain counterpart. We evaluated our model on the benchmarks of the cross-domain tasks, such as the centered digits datasets and the enlarged non-centered digits datasets. The experimental results show that our model outperforms the ADDA and other existing methods.


2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


Author(s):  
Hang Li ◽  
Xi Chen ◽  
Ju Wang ◽  
Di Wu ◽  
Xue Liu

WiFi-based Device-free Passive (DfP) indoor localization systems liberate their users from carrying dedicated sensors or smartphones, and thus provide a non-intrusive and pleasant experience. Although existing fingerprint-based systems achieve sub-meter-level localization accuracy by training location classifiers/regressors on WiFi signal fingerprints, they are usually vulnerable to small variations in an environment. A daily change, e.g., displacement of a chair, may cause a big inconsistency between the recorded fingerprints and the real-time signals, leading to significant localization errors. In this paper, we introduce a Domain Adaptation WiFi (DAFI) localization approach to address the problem. DAFI formulates this fingerprint inconsistency issue as a domain adaptation problem, where the original environment is the source domain and the changed environment is the target domain. Directly applying existing domain adaptation methods to our specific problem is challenging, since it is generally hard to distinguish the variations in the different WiFi domains (i.e., signal changes caused by different environmental variations). DAFI embraces the following techniques to tackle this challenge. 1) DAFI aligns both marginal and conditional distributions of features in different domains. 2) Inside the target domain, DAFI squeezes the marginal distribution of every class to be more concentrated at its center. 3) Between two domains, DAFI conducts fine-grained alignment by forcing every target-domain class to better align with its source-domain counterpart. By doing these, DAFI outperforms the state of the art by up to 14.2% in real-world experiments.


Author(s):  
Renjun Xu ◽  
Pelen Liu ◽  
Yin Zhang ◽  
Fang Cai ◽  
Jindong Wang ◽  
...  

Domain adaptation (DA) has achieved a resounding success to learn a good classifier by leveraging labeled data from a source domain to adapt to an unlabeled target domain. However, in a general setting when the target domain contains classes that are never observed in the source domain, namely in Open Set Domain Adaptation (OSDA), existing DA methods failed to work because of the interference of the extra unknown classes. This is a much more challenging problem, since it can easily result in negative transfer due to the mismatch between the unknown and known classes. Existing researches are susceptible to misclassification when target domain unknown samples in the feature space distributed near the decision boundary learned from the labeled source domain. To overcome this, we propose Joint Partial Optimal Transport (JPOT), fully utilizing information of not only the labeled source domain but also the discriminative representation of unknown class in the target domain. The proposed joint discriminative prototypical compactness loss can not only achieve intra-class compactness and inter-class separability, but also estimate the mean and variance of the unknown class through backpropagation, which remains intractable for previous methods due to the blindness about the structure of the unknown classes. To our best knowledge, this is the first optimal transport model for OSDA. Extensive experiments demonstrate that our proposed model can significantly boost the performance of open set domain adaptation on standard DA datasets.


Sign in / Sign up

Export Citation Format

Share Document