scholarly journals Domain Adaptation for Semantic Parsing

Author(s):  
Zechang Li ◽  
Yuxuan Lai ◽  
Yansong Feng ◽  
Dongyan Zhao

Recently, semantic parsing has attracted much attention in the community. Although many neural modeling efforts have greatly improved the performance, it still suffers from the data scarcity issue. In this paper, we propose a novel semantic parser for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain. Our semantic parser benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages, i.e., focusing on domain invariant and domain specific information, respectively. In the coarse stage, our novel domain discrimination component and domain relevance attention encourage the model to learn transferable domain general structures. In the fine stage, the model is guided to concentrate on domain related details. Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies. Additionally, we show that our model can well exploit limited target data to capture the difference between the source and target domain, even when the target domain has far fewer training instances.

Author(s):  
A. Paul ◽  
F. Rottensteiner ◽  
C. Heipke

Domain adaptation techniques in transfer learning try to reduce the amount of training data required for classification by adapting a classifier trained on samples from a source domain to a new data set (target domain) where the features may have different distributions. In this paper, we propose a new technique for domain adaptation based on logistic regression. Starting with a classifier trained on training data from the source domain, we iteratively include target domain samples for which class labels have been obtained from the current state of the classifier, while at the same time removing source domain samples. In each iteration the classifier is re-trained, so that the decision boundaries are slowly transferred to the distribution of the target features. To make the transfer procedure more robust we introduce weights as a function of distance from the decision boundary and a new way of regularisation. Our methodology is evaluated using a benchmark data set consisting of aerial images and digital surface models. The experimental results show that in the majority of cases our domain adaptation approach can lead to an improvement of the classification accuracy without additional training data, but also indicate remaining problems if the difference in the feature distributions becomes too large.


2020 ◽  
Vol 34 (04) ◽  
pp. 6243-6250 ◽  
Author(s):  
Qian Wang ◽  
Toby Breckon

Unsupervised domain adaptation aims to address the problem of classifying unlabeled samples from the target domain whilst labeled samples are only available from the source domain and the data distributions are different in these two domains. As a result, classifiers trained from labeled samples in the source domain suffer from significant performance drop when directly applied to the samples from the target domain. To address this issue, different approaches have been proposed to learn domain-invariant features or domain-specific classifiers. In either case, the lack of labeled samples in the target domain can be an issue which is usually overcome by pseudo-labeling. Inaccurate pseudo-labeling, however, could result in catastrophic error accumulation during learning. In this paper, we propose a novel selective pseudo-labeling strategy based on structured prediction. The idea of structured prediction is inspired by the fact that samples in the target domain are well clustered within the deep feature space so that unsupervised clustering analysis can be used to facilitate accurate pseudo-labeling. Experimental results on four datasets (i.e. Office-Caltech, Office31, ImageCLEF-DA and Office-Home) validate our approach outperforms contemporary state-of-the-art methods.


Author(s):  
A. Paul ◽  
F. Rottensteiner ◽  
C. Heipke

Domain adaptation techniques in transfer learning try to reduce the amount of training data required for classification by adapting a classifier trained on samples from a source domain to a new data set (target domain) where the features may have different distributions. In this paper, we propose a new technique for domain adaptation based on logistic regression. Starting with a classifier trained on training data from the source domain, we iteratively include target domain samples for which class labels have been obtained from the current state of the classifier, while at the same time removing source domain samples. In each iteration the classifier is re-trained, so that the decision boundaries are slowly transferred to the distribution of the target features. To make the transfer procedure more robust we introduce weights as a function of distance from the decision boundary and a new way of regularisation. Our methodology is evaluated using a benchmark data set consisting of aerial images and digital surface models. The experimental results show that in the majority of cases our domain adaptation approach can lead to an improvement of the classification accuracy without additional training data, but also indicate remaining problems if the difference in the feature distributions becomes too large.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7539
Author(s):  
Jungchan Cho

Universal domain adaptation (UDA) is a crucial research topic for efficient deep learning model training using data from various imaging sensors. However, its development is affected by unlabeled target data. Moreover, the nonexistence of prior knowledge of the source and target domain makes it more challenging for UDA to train models. I hypothesize that the degradation of trained models in the target domain is caused by the lack of direct training loss to improve the discriminative power of the target domain data. As a result, the target data adapted to the source representations is biased toward the source domain. I found that the degradation was more pronounced when I used synthetic data for the source domain and real data for the target domain. In this paper, I propose a UDA method with target domain contrastive learning. The proposed method enables models to leverage synthetic data for the source domain and train the discriminativeness of target features in an unsupervised manner. In addition, the target domain feature extraction network is shared with the source domain classification task, preventing unnecessary computational growth. Extensive experimental results on VisDa-2017 and MNIST to SVHN demonstrated that the proposed method significantly outperforms the baseline by 2.7% and 5.1%, respectively.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253415
Author(s):  
Hyunsik Jeon ◽  
Seongmin Lee ◽  
U Kang

Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucial problem in many real-world scenarios where no labeled target data are available. Previous approaches in UMDA assume that data are observable over all domains. However, source data are not easily accessible due to privacy or confidentiality issues in a lot of practical scenarios, although classifiers learned in source domains are readily available. In this work, we target data-free UMDA where source data are not observable at all, a novel problem that has not been studied before despite being very realistic and crucial. To solve data-free UMDA, we propose DEMS (Data-free Exploitation of Multiple Sources), a novel architecture that adapts target data to source domains without exploiting any source data, and estimates the target labels by exploiting pre-trained source classifiers. Extensive experiments for data-free UMDA on real-world datasets show that DEMS provides the state-of-the-art accuracy which is up to 27.5% point higher than that of the best baseline.


Author(s):  
Zhen Qiu ◽  
Yifan Zhang ◽  
Hongbin Lin ◽  
Shuaicheng Niu ◽  
Yanxia Liu ◽  
...  

We study a practical domain adaptation task, called source-free unsupervised domain adaptation (UDA) problem, in which we cannot access source domain data due to data privacy issues but only a pre-trained source model and unlabeled target data are available. This task, however, is very difficult due to one key challenge: the lack of source data and target domain labels makes model adaptation very challenging. To address this, we propose to mine the hidden knowledge in the source model and exploit it to generate source avatar prototypes (i.e. representative features for each source class) as well as target pseudo labels for domain alignment. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. Specifically, CPGA consists of two stages: (1) prototype generation: by exploring the classification boundary information of the source model, we train a prototype generator to generate avatar prototypes via contrastive learning. (2) prototype adaptation: based on the generated source prototypes and target pseudo labels, we develop a new robust contrastive prototype adaptation strategy to align each pseudo-labeled target data to the corresponding source prototypes. Extensive experiments on three UDA benchmark datasets demonstrate the effectiveness and superiority of the proposed method.


Author(s):  
Kaizhong Jin ◽  
Xiang Cheng ◽  
Jiaxi Yang ◽  
Kaiyuan Shen

Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. As a simple and efficient method for domain adaptation, correlation alignment transforms the distribution of the source domain by utilizing the covariance matrix of the target domain, such that a model trained on the transformed source data can be applied to the target data. However, when source and target domains come from different institutes, exchanging information between the two domains might pose a potential privacy risk. In this paper, for the first time, we propose a differentially private correlation alignment approach for domain adaptation called PRIMA, which can provide privacy guarantees for both the source and target data. In PRIMA, to relieve the performance degradation caused by perturbing the covariance matrix in high dimensional setting, we present a random subspace ensemble based covariance estimation method which splits the feature spaces of source and target data into several low dimensional subspaces. Moreover, since perturbing the covariance matrix may destroy its positive semi-definiteness, we develop a shrinking based method for the recovery of positive semi-definiteness of the covariance matrix. Experimental results on standard benchmark datasets confirm the effectiveness of our approach.


Author(s):  
Atsutoshi Kumagai ◽  
Tomoharu Iwata

We propose a simple yet effective method for unsupervised domain adaptation. When training and test distributions are different, standard supervised learning methods perform poorly. Semi-supervised domain adaptation methods have been developed for the case where labeled data in the target domain are available. However, the target data are often unlabeled in practice. Therefore, unsupervised domain adaptation, which does not require labels for target data, is receiving a lot of attention. The proposed method minimizes the discrepancy between the source and target distributions of input features by transforming the feature space of the source domain. Since such unilateral transformations transfer knowledge in the source domain to the target one without reducing dimensionality, the proposed method can effectively perform domain adaptation without losing information to be transfered. With the proposed method, it is assumed that the transformed features and the original features differ by a small residual to preserve the relationship between features and labels. This transformation is learned by aligning the higher-order moments of the source and target feature distributions based on the maximum mean discrepancy, which enables to compare two distributions without density estimation. Once the transformation is found, we learn supervised models by using the transformed source data and their labels. We use two real-world datasets to demonstrate experimentally that the proposed method achieves better classification performance than existing methods for unsupervised domain adaptation.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3606
Author(s):  
Han Sun ◽  
Xinyi Chen ◽  
Ling Wang ◽  
Dong Liang ◽  
Ningzhong Liu ◽  
...  

Deep neural networks have been successfully applied in domain adaptation which uses the labeled data of source domain to supplement useful information for target domain. Deep Adaptation Network (DAN) is one of these efficient frameworks, it utilizes Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to align the feature distribution in a reproducing kernel Hilbert space. However, DAN does not perform very well in feature level transfer, and the assumption that source and target domain share classifiers is too strict in different adaptation scenarios. In this paper, we further improve the adaptability of DAN by incorporating Domain Confusion (DC) and Classifier Adaptation (CA). To achieve this, we propose a novel domain adaptation method named C2DAN. Our approach first enables Domain Confusion (DC) by using a domain discriminator for adversarial training. For Classifier Adaptation (CA), a residual block is added to the source domain classifier in order to learn the difference between source classifier and target classifier. Beyond validating our framework on the standard domain adaptation dataset office-31, we also introduce and evaluate on the Comprehensive Cars (CompCars) dataset, and the experiment results demonstrate the effectiveness of the proposed framework C2DAN.


Author(s):  
Seiichi Kuroki ◽  
Nontawat Charoenphakdee ◽  
Han Bao ◽  
Junya Honda ◽  
Issei Sato ◽  
...  

Unsupervised domain adaptation is the problem setting where data generating distributions in the source and target domains are different and labels in the target domain are unavailable. An important question in unsupervised domain adaptation is how to measure the difference between the source and target domains. Existing discrepancy measures for unsupervised domain adaptation either require high computation costs or have no theoretical guarantee. To mitigate these problems, this paper proposes a novel discrepancy measure called source-guided discrepancy (S-disc), which exploits labels in the source domain unlike the existing ones. As a consequence, S-disc can be computed efficiently with a finitesample convergence guarantee. In addition, it is shown that S-disc can provide a tighter generalization error bound than the one based on an existing discrepancy measure. Finally, experimental results demonstrate the advantages of S-disc over the existing discrepancy measures.


Sign in / Sign up

Export Citation Format

Share Document