scholarly journals Data Adaptive Analysis on Vertical Surface Deformation Derived from Daily ITSG-Grace2018 Model

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4477
Author(s):  
Weiwei Li

With the widely used monthly gravity models, it is hard to determine the sub-monthly variations. Thanks to the high temporal resolution, a daily ITSG-Grace2018 gravity model is employed to derive the vertical deformation of the China region in 1.0° × 1.0° grids. The standard deviations of residuals between the daily and monthly averaged displacement range from 1.0 to 3.5 mm, reaching half of the median residuals, which indicates that a higher temporal resolution gravity model is quite necessary for the analysis of crustal displacement. For the signal analysis, traditional least square (LS) is limited in its analysis of signals with constant amplitude. However, geophysical signals in a geodetic time series usually fluctuate over long periods, and missing data happen. In this study, the data adaptive approach called enhanced harmonic analysis (EHA), which is based on an Independent Point (IP) scheme, is introduced to deal with these issues. To demonstrate the time-varying signals, the relative differences between EHA and LS are calculated. It illustrates that the median percentage of epochs at grids with a relative difference larger than 10% is 69.7% and the proportions for the ranges of 30%, 50%, and 70% are about 30.1%, 18.4%, and 13.0%, respectively. The obvious discrepancy suggests the advantage of EHA over LS in obtaining time-varying signals. Moreover, the spatial distribution of the discrepancy also demonstrates the regional characteristics, suggesting that the assumption of constant amplitude is not appropriate in specific regions. To further validate the effectiveness of EHA, the comprehensive analysis on the different noise types, number of IPs, missing data, and simultaneous signals are carried out. Specifically, EHA can deal with series containing white or color noise, although the stochastic model for the color noise should be modified. The signals are slightly different when selecting different numbers of IPs within a range, which could be accepted during analysis. Without interpolation, EHA performs well even with continuously missing data, which is regarded as its feature. Meanwhile, not only a single signal but also simultaneous signals can be effectively identified by EHA.


Author(s):  
J. Eppler ◽  
M. Kubanski ◽  
J. Sharma ◽  
J. Busler

The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. <br><br> Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. <br><br> The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.



2010 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Andreas H Mahnken ◽  

Over the last decade, cardiac computed tomography (CT) technology has experienced revolutionary changes and gained broad clinical acceptance in the work-up of patients suffering from coronary artery disease (CAD). Since cardiac multidetector-row CT (MDCT) was introduced in 1998, acquisition time, number of detector rows and spatial and temporal resolution have improved tremendously. Current developments in cardiac CT are focusing on low-dose cardiac scanning at ultra-high temporal resolution. Technically, there are two major approaches to achieving these goals: rapid data acquisition using dual-source CT scanners with high temporal resolution or volumetric data acquisition with 256/320-slice CT scanners. While each approach has specific advantages and disadvantages, both technologies foster the extension of cardiac MDCT beyond morphological imaging towards the functional assessment of CAD. This article examines current trends in the development of cardiac MDCT.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander H. Frank ◽  
Robert van Geldern ◽  
Anssi Myrttinen ◽  
Martin Zimmer ◽  
Johannes A. C. Barth ◽  
...  

AbstractThe relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16–27%) from highly dynamic anthropogenic combustion-related contributions (21–54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.



2021 ◽  
Author(s):  
D. Kersebaum ◽  
S.‐C. Fabig ◽  
M. Sendel ◽  
A. C. Muntean ◽  
R. Baron ◽  
...  


2021 ◽  
Vol 30 ◽  
pp. S205
Author(s):  
N. Lammoza ◽  
P. Ratnakanthan ◽  
T. Moran ◽  
P. O'Sullivan ◽  
K. O'Donnell ◽  
...  




Author(s):  
Matthew J. Cashman ◽  
Allen Gellis ◽  
Eric Boyd ◽  
Mathias Collins ◽  
Scott Anderson ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document