scholarly journals A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5217
Author(s):  
Katarzyna Tyszczuk-Rotko ◽  
Jędrzej Kozak ◽  
Małgorzata Sztanke ◽  
Krzysztof Sztanke ◽  
Ilona Sadok

A carbon nanofibers modified screen-printed carbon sensor (SPCE/CNFs) was applied for the determination of a novel promising anticancer agent candidate (ethyl 8-(4-methoxyphenyl)-4-oxo-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3-carboxylate, EIMTC) using square-wave voltammetry (SWV). It is the first method for the quantitative determination of EIMTC. The modified screen-printed sensor exhibited excellent electrochemical activity in reducing EIMTC. The peak current of EIMTC was found to be linear in two concentration ranges of 2.0 × 10−9 – 2.0 × 10−8 mol L−1 and 2.0 × 10−8 – 2.0 × 10−7 mol L−1, with a detection limit of 5.0 × 10−10 mol L−1. The connection of flow-cell for the SPCE/CNFs with SWV detection allowed for the successful determination of EIMTC in human serum samples. Ultra-high-performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS) acted as a comparative method in the serum samples analysis.

2016 ◽  
Vol 129 ◽  
pp. 205-212 ◽  
Author(s):  
Adrian Marcelo Granero ◽  
Gastón Darío Pierini ◽  
Sebastián Noel Robledo ◽  
María Susana Di Nezio ◽  
Héctor Fernández ◽  
...  

2003 ◽  
Vol 48 ◽  
pp. 3-8
Author(s):  
Aneta Dimitrovska ◽  
Valentin Mircevski ◽  
Svetlana Kulevanova

Novel adsorptive stripping square-wave voltammetric method as well as a new high-pressure liquid chromatographic method for direct determination of glycyrrhizinic acid in dosage pharmaceutical preparation, used against virus infections, have been developed. Glycyrrhizinic acid is an electrochemically active compound, which undergoes irreversible reduction on a mercury electrode surface in an aqueous medium. Its redox properties were studied thoroughly by means of square-wave voltammetry, as one of the most advanced electroanalytical technique. The voltammetric response depends mainly on the pH of the medium, composition of the supporting electrolyte, as well as the parameters of the excitement signal. It was also observed that the voltammetric properties strongly depend on the accumulation time and potential, revealing significant adsorption of glycyrrhizinic acid onto the mercury electrode surface. Upon this feature, an adsorptive stripping voltammetric method for quantitative determination of glycyrrhizinic acid was developed. A simple, sensitive and precise reversed phase HPLC method with photodiode array UV detection has also been developed, mainly for comparison and conformation of the results obtained with the voltammetric method.


The techniques of normal and differential pulse voltammetry are presented together with equations describing these techniques. A number of specific applications for both differential and normal pulse, including determination of As III in sewage and the determination of sulphide, are presented. Advantages of amperometric titrations in eliminating ‘background’ errors are shown, with the titration of Cu II with EDTA as a specific example. The use of square-wave voltammetry, a new, rapid-pulse technique, is presented, and an application in which this technique is employed in an electrochemical high performance chromatographic detector used for nitrosamine analysis is discussed.


Sign in / Sign up

Export Citation Format

Share Document