scholarly journals Light-Weight Student LSTM for Real-Time Wildfire Smoke Detection

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5508
Author(s):  
Mira Jeong ◽  
MinJi Park ◽  
Jaeyeal Nam ◽  
Byoung Chul Ko

As the need for wildfire detection increases, research on wildfire smoke detection combining low-cost cameras and deep learning technology is increasing. Camera-based wildfire smoke detection is inexpensive, allowing for a quick detection, and allows a smoke to be checked by the naked eye. However, because a surveillance system must rely only on visual characteristics, it often erroneously detects fog and clouds as smoke. In this study, a combination of a You-Only-Look-Once detector and a long short-term memory (LSTM) classifier is applied to improve the performance of wildfire smoke detection by reflecting on the spatial and temporal characteristics of wildfire smoke. However, because it is necessary to lighten the heavy LSTM model for real-time smoke detection, in this paper, we propose a new method for applying the teacher–student framework to deep LSTM. Through this method, a shallow student LSTM is designed to reduce the number of layers and cells constituting the LSTM model while maintaining the original deep LSTM performance. As the experimental results indicate, our proposed method achieves up to an 8.4-fold decrease in the number of parameters and a faster processing time than the teacher LSTM while maintaining a similar detection performance as deep LSTM using several state-of-the-art methods on a wildfire benchmark dataset.

2019 ◽  
Vol 31 (6) ◽  
pp. 1085-1113 ◽  
Author(s):  
Po-He Tseng ◽  
Núria Armengol Urpi ◽  
Mikhail Lebedev ◽  
Miguel Nicolelis

Although many real-time neural decoding algorithms have been proposed for brain-machine interface (BMI) applications over the years, an optimal, consensual approach remains elusive. Recent advances in deep learning algorithms provide new opportunities for improving the design of BMI decoders, including the use of recurrent artificial neural networks to decode neuronal ensemble activity in real time. Here, we developed a long-short term memory (LSTM) decoder for extracting movement kinematics from the activity of large ( N = 134–402) populations of neurons, sampled simultaneously from multiple cortical areas, in rhesus monkeys performing motor tasks. Recorded regions included primary motor, dorsal premotor, supplementary motor, and primary somatosensory cortical areas. The LSTM's capacity to retain information for extended periods of time enabled accurate decoding for tasks that required both movements and periods of immobility. Our LSTM algorithm significantly outperformed the state-of-the-art unscented Kalman filter when applied to three tasks: center-out arm reaching, bimanual reaching, and bipedal walking on a treadmill. Notably, LSTM units exhibited a variety of well-known physiological features of cortical neuronal activity, such as directional tuning and neuronal dynamics across task epochs. LSTM modeled several key physiological attributes of cortical circuits involved in motor tasks. These findings suggest that LSTM-based approaches could yield a better algorithm strategy for neuroprostheses that employ BMIs to restore movement in severely disabled patients.


2020 ◽  
Vol 7 (9) ◽  
pp. 8451-8461
Author(s):  
Jelena Culic Gambiroza ◽  
Toni Mastelic ◽  
Tonko Kovacevic ◽  
Mario Cagalj

Author(s):  
Dejiang Kong ◽  
Fei Wu

The widely use of positioning technology has made mining the movements of people feasible and plenty of trajectory data have been accumulated. How to efficiently leverage these data for location prediction has become an increasingly popular research topic as it is fundamental to location-based services (LBS). The existing methods often focus either on long time (days or months) visit prediction (i.e., the recommendation of point of interest) or on real time location prediction (i.e., trajectory prediction). In this paper, we are interested in the location prediction problem in a weak real time condition and aim to predict users' movement in next minutes or hours. We propose a Spatial-Temporal Long-Short Term Memory (ST-LSTM) model which naturally combines spatial-temporal influence into LSTM to mitigate the problem of data sparsity. Further, we employ a hierarchical extension of the proposed ST-LSTM (HST-LSTM) in an encoder-decoder manner which models the contextual historic visit information in order to boost the prediction performance. The proposed HST-LSTM is evaluated on a real world trajectory data set and the experimental results demonstrate the effectiveness of the proposed model.


Author(s):  
Yeo Jin Kim ◽  
Min Chi

We propose a bio-inspired approach named Temporal Belief Memory (TBM) for handling missing data with recurrent neural networks (RNNs). When modeling irregularly observed temporal sequences, conventional RNNs generally ignore the real-time intervals between consecutive observations. TBM is a missing value imputation method that considers the time continuity and captures latent missing patterns based on irregular real time intervals of the inputs. We evaluate our TBM approach with real-world electronic health records (EHRs) consisting of 52,919 visits and 4,224,567 events on a task of early prediction of septic shock. We compare TBM against multiple baselines including both domain experts' rules and the state-of-the-art missing data handling approach using both RNN and long-short term memory. The experimental results show that TBM outperforms all the competitive baseline approaches for the septic shock early prediction task. 


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Abdullah Alharbi ◽  
Wael Alosaimi ◽  
Radhya Sahal ◽  
Hager Saleh

Low heart rate causes a risk of death, heart disease, and cardiovascular diseases. Therefore, monitoring the heart rate is critical because of the heart’s function to discover its irregularity to detect the health problems early. Rapid technological advancement (e.g., artificial intelligence and stream processing technologies) allows healthcare sectors to consolidate and analyze massive health-based data to discover risks by making more accurate predictions. Therefore, this work proposes a real-time prediction system for heart rate, which helps the medical care providers and patients avoid heart rate risk in real time. The proposed system consists of two phases, namely, an offline phase and an online phase. The offline phase targets developing the model using different forecasting techniques to find the lowest root mean square error. The heart rate time-series dataset is extracted from Medical Information Mart for Intensive Care (MIMIC-II). Recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional long short-term memory (BI-LSTM) are applied to heart rate time series. For the online phase, Apache Kafka and Apache Spark have been used to predict the heart rate in advance based on the best developed model. According to the experimental results, the GRU with three layers has recorded the best performance. Consequently, GRU with three layers has been used to predict heart rate 5 minutes in advance.


Sign in / Sign up

Export Citation Format

Share Document