scholarly journals A Novel Error Correction Approach to Improve Standard Point Positioning of Integrated BDS/GPS

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6162
Author(s):  
Luyao Du ◽  
Jing Ji ◽  
Zhonghui Pei ◽  
Wei Chen

To improve the standard point positioning (SPP) accuracy of integrated BDS (BeiDou Navigation Satellite System)/GPS (Global Positioning System) at the receiver end, a novel approach based on Long Short-Term Memory (LSTM) error correction recurrent neural network is proposed and implemented to reduce the error caused by multiple sources. On the basis of the weighted least square (WLS) method and Kalman filter, the proposed LSTM-based algorithms, named WLS–LSTM and Kalman–LSTM error correction methods, are used to predict the positioning error of the next epoch, and the prediction result is used to correct the next epoch error. Based on the measured data, the results of the weighted least square method, the Kalman filter method and the LSTM error correction method were compared and analyzed. The dynamic test was also conducted, and the experimental results in dynamic scenarios were analyzed. From the experimental results, the three-dimensional point positioning error of Kalman–LSTM error correction method is 1.038 m, while the error of weighted least square method, Kalman filter and WLS–LSTM error correction method are 3.498, 3.406 and 1.782 m, respectively. The positioning error is 3.7399 m and the corrected positioning error is 0.7493 m in a dynamic scene. The results show that the LSTM-based error correction method can improve the standard point positioning accuracy of integrated BDS/GPS significantly.

2020 ◽  
Vol 165 ◽  
pp. 03009
Author(s):  
Li Yan-yi ◽  
Huang Jin ◽  
Tang Ming-xiu

In order to evaluate the performance of GPS / BDS, RTKLIB, an open-source software of GNSS, is used in this paper. In this paper, the least square method, the weighted least square method and the extended Kalman filter method are respectively applied to BDS / GPS single system for data solution. Then, the BDS system and GPS system are used for fusion positioning and the positioning results of the two systems are compared with that of the single system. Through the comparison of experiments, on the premise of using the extended Kalman filter method for positioning, when the GPS signal is not good, BDS data is introduced for dual-mode positioning, the positioning error in e direction is reduced by 36.97%, the positioning error in U direction is reduced by 22.95%, and the spatial positioning error is reduced by 16.01%, which further reflects the advantages of dual-mode positioning in improving a system robustness and reducing the error.


2012 ◽  
Vol 622-623 ◽  
pp. 1519-1523
Author(s):  
C. Saraporn ◽  
T. Dolwichai ◽  
J. Srisertpol ◽  
K. Teeka

Gyroscopes are important sensors in motion control in equipment such as airplanes, missiles and Segway. Low-cost gyroscopes have problems in signals such as bias, noise and scaling factor that decrease the efficiency of motion control. Therefore this paper is to present signal conditioning of low-cost gyroscopes using a Kalman filter to remove unwanted noise and nonlinear least square method to estimate parameters for compensation errors to the model by comparison with the encoder. The experimental results is shown that Kalman filter and nonlinear least square method can be used in signal conditioning of low-cost gyroscope for a more accurate signal.


2021 ◽  
Vol 11 (22) ◽  
pp. 11067
Author(s):  
Hui Sun ◽  
Hongguang Jia ◽  
Lina Wang ◽  
Fang Xu ◽  
Jinghong Liu

In order to improve the geo-location accuracy of the airborne optoelectronic platform and eliminate the influence of assembly systematic error on the accuracy, a systematic geo-location error correction method is proposed. First, based on the kinematic characteristics of the airborne optoelectronic platform, the geo-location model was established. Then, the error items that affect the geo-location accuracy were analyzed. The installation error between the platform and the POS was considered, and the installation error of platform’s pitch and azimuth was introduced. After ignoring higher-order infinitesimals, the least square form of systematic error is obtained. Therefore, the systematic error can be obtained through a series of measurements. Both Monte Carlo simulation analysis and in-flight experiment results show that this method can effectively obtain the systematic error. Through correction, the root-mean-square value of the geo-location error have reduced from 45.65 m to 12.62 m, and the mean error from 16.60 m to 1.24 m. This method can be widely used in systematic error correction of relevant photoelectric equipment.


2021 ◽  
Vol 263 ◽  
pp. 105817
Author(s):  
Jie Yang ◽  
Qingquan Liu ◽  
Gaoying Chen ◽  
Xuan Deng ◽  
Li Zhang

Sign in / Sign up

Export Citation Format

Share Document