scholarly journals Development of a Virtual Reality Simulator for an Intelligent Robotic System Used in Ankle Rehabilitation

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1537
Author(s):  
Florin Covaciu ◽  
Adrian Pisla ◽  
Anca-Elena Iordan

The traditional systems used in the physiotherapy rehabilitation process are evolving towards more advanced systems that use virtual reality (VR) environments so that the patient in the rehabilitation process can perform various exercises in an interactive way, thus improving the patient’s motivation and reducing the therapist’s work. The paper presents a VR simulator for an intelligent robotic system of physiotherapeutic rehabilitation of the ankle of a person who has had a stroke. This simulator can interact with a real human subject by attaching a sensor that contains a gyroscope and accelerometer to identify the position and acceleration of foot movement on three axes. An electromyography (EMG) sensor is also attached to the patient’s leg muscles to measure muscle activity because a patient who is in a worse condition has weaker muscle activity. The data collected from the sensors are taken by an intelligent module that uses machine learning to create new levels of exercise and control of the robotic rehabilitation structure of the virtual environment. Starting from these objectives, the virtual reality simulator created will have a low dependence on the therapist, this being the main improvement over other simulators already created for this purpose.

Author(s):  
Vincent Nagel ◽  
Sarah Chu ◽  
Jack Forney ◽  
Lyle Kosinski ◽  
Vimal Viswanathan

This project aims to create an electronically powered and controlled knee brace to aid stroke victims with partial paralysis with their leg muscle rehabilitation process. The newly designed assistive bionic joint takes the functionality of the existing assistive knee braces to the next level by incorporating a control algorithm that uses sensor signals gathered from the patient’s leg muscles. Electromyography (EMG) is used for gathering impulse signals from electrodes placed on key muscles as inputs for the device. The action of each major leg muscle is replicated using a set of fluidic muscles that mimic the functionality of the actual leg muscles. A microcontroller is used to interpret sensor data and adjust the contraction length of the muscles, thereby providing the wearer with augmented strength and mobility. Initial testing of a proof-of-concept prototype has led to finite control over muscle contraction length based on sensor data and has a response time of 280ms from full extension to contraction. Further testing of the brace assembly, fluidic muscles and control system is conducted and the results indicate a 600ms response time due to a step input. This personalized, powered brace has many implications for the enrichment of muscle rehabilitation such as higher patient morale, more muscle activity, and shortened recovery times.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hannah Lena Siebers ◽  
Jörg Eschweiler ◽  
Filippo Migliorini ◽  
Valentin Michael Quack ◽  
Markus Tingart ◽  
...  

Abstract Muscle imbalances are a leading cause of musculoskeletal problems. One example are leg length inequalities (LLIs). This study aimed to analyze the effect of different (simulated) LLIs on back and leg muscles in combination with kinematic compensation mechanics. Therefore, 20 healthy volunteers were analyzed during walking with artificial LLIs (0–4 cm). The effect of different amounts of LLIs and significant differences to the reference condition without LLI were calculated of maximal joint angles, mean muscle activity, and its symmetry index. While walking, LLIs led to higher muscle activity and asymmetry of back muscles, by increased lumbar lateral flexion and pelvic obliquity. The rectus femoris showed higher values, independent of the amount of LLI, whereas the activity of the gastrocnemius on the shorter leg increased. The hip and knee flexion of the long leg increased significantly with increasing LLIs, like the knee extension and the ankle plantarflexion of the shorter leg. The described compensation mechanisms are explained by a dynamic lengthening of the short and shortening of the longer leg, which is associated with increased and asymmetrical muscle activity. Presenting this overview is important for a better understanding of the effects of LLIs to improve diagnostic and therapy in the future.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2146
Author(s):  
Manuel Andrés Vélez-Guerrero ◽  
Mauro Callejas-Cuervo ◽  
Stefano Mazzoleni

Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI. The period under investigation spanned from 2016 to 2020, resulting in 30 articles that met the criteria. The literature showed the use of artificial neural networks (40%), adaptive algorithms (20%), and other mixed AI techniques (40%). Additionally, it was found that in only 16% of the articles, developments focused on neuromotor rehabilitation. The main trend in the research is the development of wearable robotic exoskeletons (53%) and the fusion of data collected from multiple sensors that enrich the training of intelligent algorithms. There is a latent need to develop more reliable systems through clinical validation and improvement of technical characteristics, such as weight/dimensions of devices, in order to have positive impacts on the rehabilitation process and improve the interactions among patients, teams of health professionals, and technology.


2012 ◽  
Vol 215-216 ◽  
pp. 225-228
Author(s):  
Liang Han ◽  
You Yang Li ◽  
Qian Zhang

This paper aims to design a knee rehabilitation device which can help the knee patients to perform movement in bending leg manner. And in that way the rehabilitation process will be improved greatly. The design of the device includes the mechanical main body design, driving motor, and control circuit which contains the keyboard setting, display unit and clock unit. Through the pulse width modulation (PWM) technology the stepping motor is driven and the automatic bent in leg is achieved. During the exercise the following information is known: the starting time, the lasting time, the angle of movement and the speed of movement. The micro controller unit (MCU) is responsible for the information processing from both the key and liquid crystal display (LCD). After the key inputs the given parameters the stepping motor can output the desired motions. Meanwhile, the LCD can display the input information. Now the project has accomplished the preliminary design, and the concrete scheme is shown in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Guan-Chun Chen ◽  
Chia-Hung Lin ◽  
Chien-Ming Li ◽  
Kai-Sheng Hsieh ◽  
Yi-Chun Du ◽  
...  

This study proposes virtual-reality (VR) simulator system for double interventional cardiac catheterization (ICC) using fractional-order vascular access tracker and haptic force producer. An endoscope or a catheter for diagnosis and surgery of cardiovascular disease has been commonly used in minimally invasive surgery. It needs specific skills and experiences for young surgeons or postgraduate year (PGY) students to operate a Berman catheter and a pigtail catheter in the inside of the human body and requires avoiding damaging vessels. To improve the training in inserting catheters, a double-catheter mechanism is designed for the ICC procedures. A fractional-order vascular access tracker is used to trace the senior surgeons’ consoled trajectories and transmit the frictional feedback and visual feedback during the insertion of catheters. Based on the clinical feeling through the aortic arch, vein into the ventricle, or tortuous blood vessels, haptic force producer is used to mock the elasticity of the vessel wall using voice coil motors (VCMs). The VR establishment with surgeons’ consoled vessel trajectories and hand feeling is achieved, and the experimental results show the effectiveness for the double ICC procedures.


Sign in / Sign up

Export Citation Format

Share Document