scholarly journals Design and Preliminary Validation of Individual Customized Insole for Adults with Flexible Flatfeet Based on the Plantar Pressure Redistribution

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1780
Author(s):  
Yangzheng Jiang ◽  
Duojin Wang ◽  
Jiming Ying ◽  
Pengfei Chu ◽  
Yu Qian ◽  
...  

Flatfoot is a common musculoskeletal deformity. One of the most effective treatments is to wear individually customized plantar pressure-based insoles to help users change the abnormally distributed pressure on the pelma. However, most previous studies were divided only into several plantar areas without detailed plantar characteristic analysis. In this study, a new insole is designed which redistributes pressure following the analysis of characteristic points of plantar pressure, and practical evaluation during walking of subjects while wearing the insole. In total, 10 subjects with flexible flatfeet have participated in the performance of gait experiments by wearing flat insoles, orthotic insoles, and plantar pressure redistribution insoles (PPRI). The results showed that the stance time of PPRI was significantly lower than that of the flat insoles under slow gait. PPRI in the second to third metatarsal and medial heel area showed better unloading capabilities than orthotic insoles. In the metatarsal and heel area, the PPRI also had its advantage in percentage of contact area compared to flat insole and orthotic insole. The results prove that PPRI improves the plantar pressure distribution and gait efficiency of adults with flexible flatfeet, and can be applied into clinical application.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Calvin T. F. Tse ◽  
Michael B. Ryan ◽  
Jason Dien ◽  
Alex Scott ◽  
Michael A. Hunt

Abstract Background Lateral wedge insoles (LWI), standalone or with medial arch support (supported-LWI), have been thoroughly investigated for their effects on modifying gait biomechanics for people with knee osteoarthritis. However, plantar pressure distribution between these insole types has not been investigated and could provide insight towards insole prescription with concomitant foot symptoms taken into consideration. Methods In a sample of healthy individuals (n = 40), in-shoe plantar pressure was measured during walking with LWI, with or without medial arch support (variable- and uniform-stiffness designs), and a flat control insole condition. Pressure data from the plantar surface of the foot were divided into seven regions: medial/lateral rearfoot, midfoot, medial/central/lateral forefoot, hallux. Plantar pressure outcomes assessed were the medial-lateral pressure index (MLPI) for the whole foot, and the peak pressure, pressure-time integral (PTI), and contact area in each plantar region. Comfort in each insole condition was rated as a change relative to the flat control insole condition. Repeated-measures analyses of variance were calculated to compare the plantar pressure outcomes between insole conditions. Results Regionally, medial rearfoot and forefoot pressure were reduced by all wedged insoles, with the variable-stiffness supported-wedge showing greater reductions than the standalone wedge. Lateral rearfoot and forefoot pressure were reduced by both supported-LWI, but unchanged by the standalone wedge. In the midfoot, the standalone wedge maintained pressure but reduced regional contact area, while both supported-LWI increased midfoot pressure and contact area. All LWI increased the MLPI, indicating a lateral shift in plantar pressure distribution throughout the weightbearing phase of gait. Comfort ratings were not significantly different between insole conditions. Conclusions Regional differences in plantar pressure may help determine an appropriate lateral wedge insole variation to avoid exacerbation of concomitant foot symptoms by minimizing pressure in symptomatic regions. Lateral shifts in plantar pressure distribution were observed in all laterally wedged conditions, including one supported-LWI that was previously shown to be biomechanically ineffective for modifying knee joint load distribution. Thus, shifts in foot centre of pressure may not be a primary mechanism by which LWI can modify knee joint load distribution for people with knee osteoarthritis.


Author(s):  
Muge Kirmizi ◽  
Yesim Salik Sengul ◽  
Salih Angin

BACKGROUND: Flexible flatfoot is associated with altered plantar pressure distribution, but it is not clear how muscle fatigue affects plantar pressure characteristics in flexible flatfoot and normal foot. OBJECTIVE: To investigate the effects of calf muscles fatigue on plantar pressure variables in flexible flatfoot and normal foot. METHODS: Twenty-five people with flexible flatfoot and twenty-five people with normal foot were included. The unilateral heel-rise test was used to induce calf muscles fatigue. Plantar pressure variables were collected during preferred walking immediately before and after fatigue. The two-way mixed-design ANOVA was used to determine the main effect of fatigue and the interaction between foot posture and fatigue. RESULTS: Fatigue causes medialization of the contact area under the forefoot and the maximum force under the heel and forefoot (p< 0.05). When examining the differences in the effects of fatigue between groups, the contact area under the medial heel increased with fatigue in flexible flatfoot but decreased in normal foot; moreover, the contact area and maximum force under the midfoot and the maximum force under the third metatarsal decreased with fatigue in flexible flatfoot but increased in normal foot (p< 0.05). CONCLUSIONS: Calf muscles fatigue causes medialization of the maximum force and contact area. Especially the midfoot was affected differently by fatigue in flexible flatfoot and normal foot.


2011 ◽  
Vol 101 (5) ◽  
pp. 415-423 ◽  
Author(s):  
Ana Paula Ribeiro ◽  
Francis Trombini-Souza ◽  
Isabel de Camargo Neves Sacco ◽  
Rodrigo Ruano ◽  
Marcelo Zugaib ◽  
...  

Background: The intention of this investigation was to longitudinally describe and compare the plantar pressure distribution in orthostatic posture and gait throughout pregnancy. Methods: A prospective longitudinal observational study was conducted with six pregnant women (mean ± SD age, 32 ± 3 years) with a mean ± SD weight gain of 10.0 ± 1.4 kg. Peak pressure, contact time, contact area, and maximum force in five plantar areas were evaluated using capacitive insoles during gait and orthostatic posture. For 1 year, the plantar pressures of pregnant women were evaluated the last month of each trimester. Comparisons among plantar areas and trimesters were made by analysis of variance. Results: For orthostatic posture, no differences in contact time, contact area, peak pressure, and maximum force throughout the trimesters were found. During gait, peak pressure and maximum force of the medial rearfoot were reduced from the first to third and second to third trimesters. Maximum force increased at the medial forefoot from the first to second trimester. Contact area increased at the lateral rearfoot from the second to third trimester and at the midfoot from the first to third trimester. Contact time increased at the midfoot and medial and lateral forefoot from the first to third trimester. Conclusions: Pregnant women do not alter plantar pressure during orthostatic posture, but, during gait, the plantar loads were redistributed from the rearfoot (decrease) to the midfoot and forefoot (increase) throughout pregnancy. These adjustments help maintain the dynamic stability of the pregnant woman during locomotion. (J Am Podiatr Med Assoc 101(5): 415–423, 2011)


2021 ◽  
Author(s):  
Calvin Tse ◽  
Michael Ryan ◽  
Jason Dien ◽  
Alex Scott ◽  
Michael Hunt

Abstract Background: Lateral wedge insoles (LWI), standalone or with medial arch support (supported-LWI), have been thoroughly investigated for their effects on modifying gait biomechanics for people with knee osteoarthritis. However, plantar pressure distribution between these insole types has not been investigated and could provide insight towards insole prescription with concomitant foot symptoms taken into consideration.Methods: In a sample of healthy individuals (n = 40), in-shoe plantar pressure was measured during walking with LWI, with or without medial arch support (variable- and uniform-stiffness designs), and a flat control insole condition. Pressure data from the plantar surface of the foot was divided into seven regions: medial/lateral rearfoot, midfoot, medial/central/lateral forefoot, hallux. Plantar pressure outcomes assessed were the medial-lateral pressure index (MLPI) for the whole foot, and the peak pressure, pressure-time integral (PTI), and contact area in each plantar region. Comfort in each insole condition was rated as a change relative to the flat control insole condition. Repeated-measures analyses of variance were calculated to compare the plantar pressure outcomes between insole conditions. Results: Regionally, medial rearfoot and forefoot pressure were reduced by all wedged insoles, with the variable-stiffness supported-wedge showing greater reductions than the standalone wedge. Lateral rearfoot and forefoot pressure were reduced by both supported-LWI, but unchanged by the standalone wedge. In the midfoot, the standalone wedge maintained pressure but reduced regional contact area, while both supported-LWI increased midfoot pressure and contact area. All LWI increased the MLPI, indicating a lateral shift in plantar pressure distribution throughout the weightbearing phase of gait. Comfort ratings were not significantly different between insole conditions. Conclusions: Regional differences in plantar pressure may help determine an appropriate lateral wedge insole variation to avoid exacerbation of concomitant foot symptoms by minimizing pressure in symptomatic regions. Lateral shifts in plantar pressure distribution were observed in all laterally wedged conditions, including one supported-LWI that was previously shown to be biomechanically ineffective for modifying knee joint load distribution. Thus, shifts in foot centre of pressure may not be a primary mechanism by which LWI can modify knee joint load distribution for people with knee osteoarthritis.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


2011 ◽  
Vol 33 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Karin Elisabeth Fiedler ◽  
Wijnand Jan A. Stuijfzand ◽  
Jaap Harlaar ◽  
Joost Dekker ◽  
Heleen Beckerman

1995 ◽  
Vol 10 (5) ◽  
pp. 271-274 ◽  
Author(s):  
H Chen ◽  
BM Nigg ◽  
M Hulliger ◽  
J de Koning

Sign in / Sign up

Export Citation Format

Share Document