negative resistance
Recently Published Documents


TOTAL DOCUMENTS

1242
(FIVE YEARS 85)

H-INDEX

45
(FIVE YEARS 4)

Author(s):  
Noor Thamer Almalah ◽  
Faris Hasan Aldabbagh

<p>In this paper, a designed circuit used for low-frequency filters is implemented and realized the filter is based on frequency-dependent negative resistance (FDNR) as an inductor simulator to substitute the traditional inductance, which is heavy and high cost due to the coil material manufacturing and size area. The simulator is based on an active operation amplifier or operation transconductance amplifier (OTA) that is easy to build in an integrated circuit with a minimum number of components. The third and higher-order Butterworth filter is simulated at low frequency for low pass filter to use in medical instruments and low-frequency applications. The designed circuit is compared with the traditional proportional integral controller enhanced (PIE) and T section ordinary filter. The results with magnitude and phase response were compared and an acceptable result is obtained. The filter can be used for general applications such as medical and other low-frequency filters needed.</p>


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3163
Author(s):  
Qian Zhang ◽  
Ximei Liu ◽  
Meihang Li ◽  
Fei Yu ◽  
Dachuan Yu

This paper focuses on the instability problem of the medium-voltage DC (MVDC) distribution system and proposes an impedance phase reshaping (IPR) method. To obtain the load impedance model of the MVDC distribution system, the input impedance of the input-series-output-parallel (ISOP) DC transformer (DCT) is derived by the generalized average modeling (GAM). Based on the obtained model, the traditional ISOP DCT controller optimization (IDCO) approach is discussed and the IPR method is developed. An impedance phase controller is introduced based on the original control method. According to the optimized impedance stability criterion, the parameters of the impedance phase controller are determined. Compared with the IDCO approach, the proposed method weakens the negative resistance characteristic of the load impedance at the resonant frequency. Therefore, the MV bus voltage oscillation is rapidly mitigated. Besides, the dynamic performance of the system using the IPR method can be classified as good. The simulation results show that the mathematical model is correct, and the proposed method is effective for the rapid stabilization of MVDC distribution systems.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1441
Author(s):  
Yumei Luo ◽  
Xing Xu ◽  
Yudong Xia ◽  
Shengli Pang ◽  
Fen Xu ◽  
...  

Thin films of Ca-doped double perovskite, PrBa0.7Ca0.3Co2O5+δ (PBCC), were epitaxially grown on (001) SrTiO3, and their redox reactions under a switching flow of H2 and O2 gases were examined at various temperatures by measuring the resistance R(t) of the films as a function of the gas flow time t. In the temperature range between 350 and 725 °C, these thin films are reduced and oxidized in an ultrafast manner under the flow of H2 and O2 gases, respectively, suggesting that PBCC thin films are promising candidates for developing ultra-sensitive oxygen sensors or SOFC cathodes at intermediate or high temperatures. When the gas flow is switched to O2, the reduced PBCC thin films exhibit a negative resistance at temperatures above 600 °C but a positive resistance at temperatures below 600 °C. The probable cause for these anomalous transport properties is the diffusion of the H atoms from the cathode to the anode in the PBCC film, which provides a current opposite to that resulting from the external voltage.


Automatica ◽  
2021 ◽  
pp. 110011
Author(s):  
Félix A. Miranda-Villatoro ◽  
Fulvio Forni ◽  
Rodolphe J. Sepulchre

2021 ◽  
Vol 2125 (1) ◽  
pp. 012009
Author(s):  
Jing Yang ◽  
Yong Sun ◽  
Ladier Fa ◽  
Shuhan Zhang ◽  
Zhihao Wang ◽  
...  

Abstract Power systems are at risk of sub-synchronous oscillation (SSO) when connecting doubly-fed induction generator (DFIG)-based wind turbines to transmission lines with series compensation. This paper focuses on the mechanism and mitigation strategy of SSO. Firstly, the mechanism of SSO is studied from two aspects: induction generator effect (IGE) and sub-synchronous control interaction (SSCI). An equivalent circuit is developed to illustrate the negative resistance effect. Based on the result of the analysis, the SSO mitigation strategy using notch filter and virtual resistance control is proposed. In order to verify the result of analysis and the effectiveness of mitigation strategy, time-domain simulations are carried out based on PowerFactory DIgSILENT.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012055
Author(s):  
K N Proskuryakov ◽  
A V Anikeev

Abstract The digital acoustic model of a nuclear reactor (DAMNR) is presented as an auto-oscillatory system belonging to a special class of nonlinear dissipative systems capable of generating undamped oscillations. It is established that a water-water power reactor with a turbulent flow of a coolant is an open system of high complexity with a large number of elements, the connections between which are not predetermined, but probabilistic. Elements of the coolant circuit with negative dissipation (negative friction) are identified. It is shown that they self-organize chaotic turbulent pulsations and vortices into ordered wave oscillations, the frequency of which is determined by the Thomson (Kelvin) formula. In radio engineering circuits, an electronic self-oscillating generator with transformer feedback has similar properties. The presence of negative resistance in nonlinear dynamical systems leads to self-organization of chaotic turbulent perturbations and generation of self-oscillations in the form of acoustic standing waves (ASW). On the basis of theoretical and experimental data, the reliability of a previously unknown property of a reactor with connected pipelines - the ability to generate several ASW simultaneously-was confirmed. The use of DAMNR in the design and operation of nuclear power plants allows to identify the sources of ASW occurring in the coolant, the conditions for their occurrence and frequency.


2021 ◽  
Vol 11 (21) ◽  
pp. 9815
Author(s):  
Vladimir Ulansky ◽  
Ahmed Raza ◽  
Denys Milke

Negative differential resistance (NDR) is inherent in many electronic devices, in which, over a specific voltage range, the current decreases with increasing voltage. Semiconductor structures with NDR have several unique properties that stimulate the search for technological and circuitry solutions in developing new semiconductor devices and circuits experiencing NDR features. This study considers two-terminal NDR electronic circuits based on multiple-output current mirrors, such as cascode, Wilson, and improved Wilson, combined with a field-effect transistor. The undoubted advantages of the proposed electronic circuits are the linearity of the current-voltage characteristics in the NDR region and the ability to regulate the value of negative resistance by changing the number of mirrored current sources. We derive equations for each proposed circuit to calculate the NDR region’s total current and differential resistance. We consider applications of NDR circuits for designing microwave single frequency oscillators and voltage-controlled oscillators. The problem of choosing the optimal oscillator topology is examined. We show that the designed oscillators based on NDR circuits with Wilson and improved Wilson multiple-output current mirrors have high efficiency and extremely low phase noise. For a single frequency oscillator consuming 33.9 mW, the phase noise is −154.6 dBc/Hz at a 100 kHz offset from a 1.310 GHz carrier. The resulting figure of merit is −221.6 dBc/Hz. The implemented oscillator prototype confirms the theoretical achievements.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6583
Author(s):  
Francisco Javier del Pino Suárez ◽  
Sunil Lalchand Khemchandani

Inductor-capacitor voltage controlled oscillators (LC-VCOs) are the most common type of oscillator used in sensors systems, such as transceivers for wireless sensor networks (WSNs), VCO-based reading circuits, VCO-based radar sensors, etc. This work presents a technique to reduce the LC-VCOs phase noise using a new current-shaping method based on a feedback injection mechanism with only two additional transistors. This technique consists of keeping the negative resistance seen from LC tank constant throughout the oscillation cycle, achieving a significant phase noise reduction with a very low area increase. To test this method an LC-VCO was designed, fabricated and measured on a wafer using 90 nm CMOS technology with 1.2 V supply voltage. The oscillator outputs were buffered using source followers to provide additional isolation from load variations and to boost the output power. The tank was tuned to 1.8 GHz, comprising two 1.15 nH with 1.5 turns inductors with a quality factor (Q) of 14, a 3.27 pF metal-oxide-metal capacitor, and two varactors. The measured phase noise was −112 dBc/Hz at 1 MHz offset. Including the pads, the chip area is 750 × 850 μm2.


Sign in / Sign up

Export Citation Format

Share Document