High-Q Active Microwave Sensor Based on Microstrip Complementary Split-Ring Resonator (MCSRR) Structure for Dielectric Characterization

2021 ◽  
Vol 36 (7) ◽  
pp. 922-927
Author(s):  
Hong-Yi Gan ◽  
Wen-Sheng Zhao ◽  
Da-Wei Wang ◽  
Jing Wang ◽  
Qi Liu ◽  
...  

This paper presents an active microwave sensor for the characterization of dielectric materials. The sensor is consisted of a microstrip complementary split-ring resonator (MCSRR) structure and an active feedback loop. The loop uses an amplifier to generate negative resistance to compensate the resonator’s loss and increase the loaded quality factor. The developed sensor possesses the advantages of high quality factor, ultra-small electrical size, and high sensitivity. A prototype of the sensor is fabricated and measured for validation.

2021 ◽  
Vol 2118 (1) ◽  
pp. 012004
Author(s):  
J Zapata-Londoño ◽  
F Umaña-Idárraga ◽  
J Morales-Guerra ◽  
S Arias-Gómez ◽  
C Valencia-Balvin ◽  
...  

Abstract In this work, we propose a microwave sensor that allows the characterization of dielectric materials based on a differential configuration. A microstrip permittivity sensor of the surrounding material is proposed using a split ring-resonator to measure differentially. The geometry was optimized and was numerically analyzed using CST STUDIO. The numerical analysis of the metamaterial unit cells is carried out first, to determine the operating band. After that, the metamaterial cell was employed to design the differential microstrip permittivity sensor. The obtained results reveal that the proposed sensor has the capability to characterize different materials whose relative dielectric permittivity’s are in the range of 9.8 to 80 with great performance. The device has a total size of 86 mm × 60 mm and operates around 3 GHz. In this band, the sensor reaches a sensibility of 2.89 MHz and a Q-factor of 70.15. Thus, this work shows a compact, reusable, label-free, and non-destructive microwave sensing device and paves the way for high accuracy sensing of the dielectric properties of different materials due to its high- Q-factor as well as high sensitivity.


2018 ◽  
Vol 18 (24) ◽  
pp. 9978-9983 ◽  
Author(s):  
Euclides Lourenco Chuma ◽  
Yuzo Iano ◽  
Glauco Fontgalland ◽  
Leonardo Lorenzo Bravo Roger

2020 ◽  
Author(s):  
Ahmed Javed ◽  
Ali Arif ◽  
Muhammad Zubair ◽  
Muhammad Qasim Mehmood ◽  
Kashif Riaz

<p>We propose a low-cost, easy-to-fabricate, contactless microwave sensor for dielectric characterization of liquids. The design of the proposed sensor is based on a multiple complementary split-ring resonator (MCSRR) fabricated on a low-cost FR-4 substrate. A glass capillary tube having an inner diameter of 0.008λ<sub>0</sub> is inserted in the high electric field region of the MCSRR to carry the liquid under test. The sensor is designed to operate at a resonant frequency of 2.45GHz for an empty tube and shifted resonant peaks are utilized for the dielectric characterization of different liquids. The maximum observed shifts in resonant frequency and Q factor are up to 400MHz and 31, respectively. The numerically established relations are experimentally verified through fabricated sensor for various binary mixtures of water and ethanol. The percentage errors between the calculated and reference permittivity of different samples are noticed to be less than 5%. The proposed device promises to be a cost-effective and convenient solution for accurate dielectric characterization of liquids and their binary aqueous solutions.<b></b></p>


2020 ◽  
Author(s):  
Ahmed Javed ◽  
Ali Arif ◽  
Muhammad Zubair ◽  
Muhammad Qasim Mehmood ◽  
Kashif Riaz

<p>We propose a low-cost, easy-to-fabricate, contactless microwave sensor for dielectric characterization of liquids. The design of the proposed sensor is based on a multiple complementary split-ring resonator (MCSRR) fabricated on a low-cost FR-4 substrate. A glass capillary tube having an inner diameter of 0.008λ<sub>0</sub> is inserted in the high electric field region of the MCSRR to carry the liquid under test. The sensor is designed to operate at a resonant frequency of 2.45GHz for an empty tube and shifted resonant peaks are utilized for the dielectric characterization of different liquids. The maximum observed shifts in resonant frequency and Q factor are up to 400MHz and 31, respectively. The numerically established relations are experimentally verified through fabricated sensor for various binary mixtures of water and ethanol. The percentage errors between the calculated and reference permittivity of different samples are noticed to be less than 5%. The proposed device promises to be a cost-effective and convenient solution for accurate dielectric characterization of liquids and their binary aqueous solutions.<b></b></p>


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2021 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Faezeh Shanehsazzadeh ◽  
Nafise Azizi ◽  
Hosna Kazerooni Haghighat ◽  
Fatemeh Mashayekhi ◽  
Mehdi Fardmanesh

A novel, cost-effective, flexible microwave sensor is proposed to facilitate point-of-care testing (POCT) methods for medical diagnosis. The sensor is based on the complementary split-ring resonator (CSRR) to accurately measure the permittivity of biomaterials over a wide range of frequencies. This ability can be used to characterize various materials under test (MUT) such as blood, saliva, tissue samples, etc. The flexibility of the proposed sensor means that it can be used when the accessibility of the sample has technical difficulties, such as on curved surfaces. Firstly, the optimized structure and coupling to the readout transmission line are evaluated using finite element method (FEM) simulations. Then, the prototype of the optimized structure is fabricated on a thin polydimethylsiloxane (PDMS) substrate as a biocompatible economical polymer, and aluminium is carefully chosen for the fabrication of CSRR and readout parts. The proposed flexible sensor is tested and compared to conventional rigid CSRR sensors. The proposed structure withstood the different bending positions well, and also showed an improvement in the results for curved MUT.


2020 ◽  
Vol 01 (01) ◽  
Author(s):  
H. M. Teoh ◽  
◽  
S. K. Yee ◽  

Material characterization method based on radio frequency and microwave measurements is highly demanded. The dielectric properties are very important for electronic circuit design, food industry, and medicine and health care. In this work, a complementary split-ring resonator (CSRR)-based sensor employed in the ground plane is proposed for dielectric measurement. This method enables the determination of both relative permittivity and relative permeability at the same time as well as simple sample preparation process. This project focuses on the design, simulation and the prediction formulae of the CSRR. This CSRR is resonating at 2.477 GHz with a quality factor of 128.91 in unloaded condition. Basically, there are shifting in the resonance frequency and the change of the quality factor when dielectric material is placed at the sensing area in separate zones. Four prediction formulas are proposed, which they are depend on the dielectric constant, real permeability, normalized resonance frequency, inverse normalized quality factor, electric loss tangent and magnetic loss tangent of the materials. These formulae are used to measure the permittivity and permeability of FR-4, Polyimide, and self-defined material. Based on the comparison, the percentage error between calculated result and reference data are 10% and 4.1% for electric and magnetic loss tangent respectively. The maximum percentage error in dielectric constant and real permeability are 4.5% and 4.29% respectively. Based on the percentage of error, it is convincing that the prediction formulas are reliable for dielectric measurement. Future work of this project should focus on verification of its actual performance through experimental measurement.


Sign in / Sign up

Export Citation Format

Share Document