scholarly journals Is Satellite Ahead of Terrestrial in Deploying NOMA for Massive Machine-Type Communications?

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4290
Author(s):  
Antonio Arcidiacono ◽  
Daniele Finocchiaro ◽  
Riccardo De Gaudenzi ◽  
Oscar del Rio-Herrero ◽  
Stefano Cioni ◽  
...  

Non-orthogonal multiple access (NOMA) technologies are considered key technologies for terrestrial 5G massive machine-type communications (mMTC) applications. It is less known that NOMA techniques were pioneered about ten years ago in the satellite domain to match the growing demand for mMTC services. This paper presents the key features of the first NOMA-based satellite network, presenting not only the underlying technical solutions and measured performance but also the related deployment over the Eutelsat satellite fleet. In particular, we describe the specific ground segment developments for the user terminals and the gateway station. It is shown that the developed solution, based on an Enhanced Spread ALOHA random access technique, achieves an unprecedented throughput, scalability and service cost and is well matched to several mMTC satellite use cases. The ongoing R&D lines covering both the ground segment capabilities enhancement and the extension to satellite on-board packet demodulation are also outlined. These pioneering NOMA satellite technology developments and in-the-field deployments open up the possibility of developing and exploiting 5G mMTC satellite- and terrestrial-based systems in a synergic and interoperable architecture.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 116
Author(s):  
Wissal Ben Ameur ◽  
Philippe Mary ◽  
Jean-François Hélard ◽  
Marion Dumay ◽  
Jean Schwoerer

Non-orthogonal multiple access schemes with grant free access have been recently highlighted as a prominent solution to meet the stringent requirements of massive machine-type communications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding complexity. However, this family of receivers requires sufficiently diversified received user powers in order to ensure the best performance and avoid the error propagation phenomenon. The power allocation has been considered as a complicated issue especially for a decentralized decision with a minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a minimal overhead based on a tight approximation of the bit error probability (BEP) while considering the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each user reward only informs about whether its own packet was successfully transmitted or not; (ii) in Scenario 2, each user reward may carry information about the other interfering user packets. The performances of the proposed algorithm and the MAB techniques are compared in terms of the successful transmission rate. The simulation results prove that the MAB algorithms show a better performance in the second scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.


Author(s):  
Byung-Hyun Lee ◽  
Hyun-Suk Lee ◽  
Seokjae Moon ◽  
Jang-Won Lee

Author(s):  
Jiseung Youn ◽  
Joohan Park ◽  
Soohyeong Kim ◽  
Cheolwoo You ◽  
Sunghyun Cho

Sign in / Sign up

Export Citation Format

Share Document