scholarly journals A Hybrid Deep Learning-Driven SDN Enabled Mechanism for Secure Communication in Internet of Things (IoT)

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4884
Author(s):  
Danish Javeed ◽  
Tianhan Gao ◽  
Muhammad Taimoor Khan ◽  
Ijaz Ahmad

The Internet of Things (IoT) has emerged as a new technological world connecting billions of devices. Despite providing several benefits, the heterogeneous nature and the extensive connectivity of the devices make it a target of different cyberattacks that result in data breach and financial loss. There is a severe need to secure the IoT environment from such attacks. In this paper, an SDN-enabled deep-learning-driven framework is proposed for threats detection in an IoT environment. The state-of-the-art Cuda-deep neural network, gated recurrent unit (Cu- DNNGRU), and Cuda-bidirectional long short-term memory (Cu-BLSTM) classifiers are adopted for effective threat detection. We have performed 10 folds cross-validation to show the unbiasedness of results. The up-to-date publicly available CICIDS2018 data set is introduced to train our hybrid model. The achieved accuracy of the proposed scheme is 99.87%, with a recall of 99.96%. Furthermore, we compare the proposed hybrid model with Cuda-Gated Recurrent Unit, Long short term memory (Cu-GRULSTM) and Cuda-Deep Neural Network, Long short term memory (Cu- DNNLSTM), as well as with existing benchmark classifiers. Our proposed mechanism achieves impressive results in terms of accuracy, F1-score, precision, speed efficiency, and other evaluation metrics.

Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


In this study, it is presented a new hybrid model based on deep neural networks to predict the direction and magnitude of the Forex market movement in the short term. The overall model presented is based on the scalping strategy and is provided for high frequency transactions. The proposed hybrid model is based on a combination of three models based on deep neural networks. The first model is a deep neural network with a multi-input structure consisting of a combination of Long Short Term Memory layers. The second model is a deep neural network with a multi-input structure made of a combination of one-dimensional Convolutional Neural network layers. The third model has a simpler structure and is a multi-input model of the Multi-Layer Perceptron layers. The overall model was also a model based on the majority vote of three top models. This study showed that models based on Long Short-Term Memory layers provided better results than the other models and even hybrid models with more than 70% accurate.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani

Smart grids, advanced information technology, have become the favored intrusion targets due to the Internet of Things (IoT) using sensor devices to collect data from a smart grid environment. These data are sent to the cloud, which is a huge network of super servers that provides different services to different smart infrastructures, such as smart homes and smart buildings. These can provide a large space for attackers to launch destructive cyberattacks. The novelty of this proposed research is the development of a robust framework system for detecting intrusions based on the IoT environment. An IoTID20 dataset attack was employed to develop the proposed system; it is a newly generated dataset from the IoT infrastructure. In this framework, three advanced deep learning algorithms were applied to classify the intrusion: a convolution neural network (CNN), a long short-term memory (LSTM), and a hybrid convolution neural network with the long short-term memory (CNN-LSTM) model. The complexity of the network dataset was dimensionality reduced, and to improve the proposed system, the particle swarm optimization method (PSO) was used to select relevant features from the network dataset. The obtained features were processed using deep learning algorithms. The experimental results showed that the proposed systems achieved accuracy as follows: CNN = 96.60%, LSTM = 99.82%, and CNN-LSTM = 98.80%. The proposed framework attained the desired performance on a new variable dataset, and the system will be implemented in our university IoT environment. The results of comparative predictions between the proposed framework and existing systems showed that the proposed system more efficiently and effectively enhanced the security of the IoT environment from attacks. The experimental results confirmed that the proposed framework based on deep learning algorithms for an intrusion detection system can effectively detect real-world attacks and is capable of enhancing the security of the IoT environment.


In this article, we have trained neural network based on deep learning architectures to classify images on standard Fashion-MNIST and CIFAR-10 dataset. The various CNN- based classification architecture and RNN-based classification architecture are trained as well as tested on those standard datasets. In CNN architecture, we include CNN with 1, 2 and 3 Convolutional Layer and in RNN architecture, we include Long- Short Term Memory (LSTM) with one and two LSTM layer. Our models show remarkable outcome on the standard benchmark dataset. The tested models like CNN1 show greater accuracy on the MNIST fashion dataset and CNN3, LSTM1 and LSTM2 performed better than other models on the CIFAR-10 dataset.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240663
Author(s):  
Beibei Ren

With the rapid development of big data and deep learning, breakthroughs have been made in phonetic and textual research, the two fundamental attributes of language. Language is an essential medium of information exchange in teaching activity. The aim is to promote the transformation of the training mode and content of translation major and the application of the translation service industry in various fields. Based on previous research, the SCN-LSTM (Skip Convolutional Network and Long Short Term Memory) translation model of deep learning neural network is constructed by learning and training the real dataset and the public PTB (Penn Treebank Dataset). The feasibility of the model’s performance, translation quality, and adaptability in practical teaching is analyzed to provide a theoretical basis for the research and application of the SCN-LSTM translation model in English teaching. The results show that the capability of the neural network for translation teaching is nearly one times higher than that of the traditional N-tuple translation model, and the fusion model performs much better than the single model, translation quality, and teaching effect. To be specific, the accuracy of the SCN-LSTM translation model based on deep learning neural network is 95.21%, the degree of translation confusion is reduced by 39.21% compared with that of the LSTM (Long Short Term Memory) model, and the adaptability is 0.4 times that of the N-tuple model. With the highest level of satisfaction in practical teaching evaluation, the SCN-LSTM translation model has achieved a favorable effect on the translation teaching of the English major. In summary, the performance and quality of the translation model are improved significantly by learning the language characteristics in translations by teachers and students, providing ideas for applying machine translation in professional translation teaching.


2021 ◽  
Vol 7 (2) ◽  
pp. 133
Author(s):  
Widi Hastomo ◽  
Adhitio Satyo Bayangkari Karno ◽  
Nawang Kalbuana ◽  
Ervina Nisfiani ◽  
Lussiana ETP

Penelitian ini bertujuan untuk meningkatkan akurasi dengan menurunkan tingkat kesalahan prediksi dari 5 data saham blue chip di Indonesia. Dengan cara mengkombinasikan desain 4 hidden layer neural nework menggunakan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU). Dari tiap data saham akan dihasilkan grafik rmse-epoch yang dapat menunjukan kombinasi layer dengan akurasi terbaik, sebagai berikut; (a) BBCA dengan layer LSTM-GRU-LSTM-GRU (RMSE=1120,651, e=15), (b) BBRI dengan layer LSTM-GRU-LSTM-GRU (RMSE =110,331, e=25), (c) INDF dengan layer GRU-GRU-GRU-GRU (RMSE =156,297, e=35 ), (d) ASII dengan layer GRU-GRU-GRU-GRU (RMSE =134,551, e=20 ), (e) TLKM dengan layer GRU-LSTM-GRU-LSTM (RMSE =71,658, e=35 ). Tantangan dalam mengolah data Deep Learning (DL) adalah menentukan nilai parameter epoch untuk menghasilkan prediksi akurasi yang tinggi.


Sign in / Sign up

Export Citation Format

Share Document