scholarly journals A High-Speed Demodulation Technology of Fiber Optic Extrinsic Fabry-Perot Interferometric Sensor Based on Coarse Spectrum

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6609
Author(s):  
Peng Zhang ◽  
Ying Wang ◽  
Yuru Chen ◽  
Xiaohua Lei ◽  
Yi Qi ◽  
...  

A fast real-time demodulation method based on the coarsely sampled spectrum is proposed for transient signals of fiber optic extrinsic Fabry-Perot interferometers (EFPI) sensors. The feasibility of phase demodulation using a coarse spectrum is theoretically analyzed. Based on the coarse spectrum, fast Fourier transform (FFT) algorithm is used to roughly estimate the cavity length. According to the rough estimation, the maximum likelihood estimation (MLE) algorithm is applied to calculate the cavity length accurately. The dense wavelength division multiplexer (DWDM) is used to split the broadband spectrum into the coarse spectrum, and the high-speed synchronous ADC collects the spectrum. The experimental results show that the system can achieve a real-time dynamic demodulation speed of 50 kHz, a static measurement root mean square error (RMSE) of 0.184 nm, and a maximum absolute and relative error distribution of 15 nm and 0.005% of the measurement cavity length compared with optical spectrum analyzers (OSA).

2013 ◽  
Vol 470 ◽  
pp. 630-635 ◽  
Author(s):  
Ning Fang Song ◽  
Rui Qi Cui ◽  
Yu Jie Yang ◽  
Xiao Liang Xu

In this paper, a novel method used for Fabry-Perot cavity length's demodulation in high-speed and large scope measurement was proposed. Principle of the method is based on uniqueness of intensity of multiple wavelengths in the scope of Fabry-Perot vibration. This technique offers flexibility of selecting incident wave length and enhances the scope of demodulation of cavity length, compared with that popular triple wave length demodulation. In experiment, multi-wavelength demodulation is demonstrated for measurement of cavity length varying from 110um to 115um and the strain resolution was higher than 0.1um.


2010 ◽  
Vol 34-35 ◽  
pp. 1314-1318
Author(s):  
Xin Hua Wang ◽  
Shou Qiang Hu ◽  
Qian Yi Ya ◽  
Shu Wen Sun ◽  
Xiu Xia Cao

Structure and principle of a new kind of diphase opposition giant magnetostrictive self-sensing actuator (SSA for short) is introduced, for which a kind of double outputs high-precision NC stable voltage power is designed. With the method of combining with the hardware design and the software setting, the controllability and reliability of the actuator are greatly improved. And the whole design becomes more reasonable, which saves the cost and improves the practicability. In addition, based on the micro controller unit (MCU) with high-speed control, the scheme design of the real-time separation circuit for dynamic balance signal can effectively identify out and pick up the self-sensing signal which changes from foreign pressure feed back. Then the SSA real-time, dynamic and accurately control is realized. The experiment results show that the voltage power can high-speed and accurately output both output voltages with high current, and that the self-sensing signal decoupling circuit can isolate the self-sensing signals without distortion


Author(s):  
M. W. Dubetz ◽  
J. G. Kuhl ◽  
E. J. Haug

Abstract This paper presents a network based implementation of real-time dynamic simulation methods. An interactive animated graphics environment is presented that permits the engineer to view high quality animated graphics rendering of dynamic performance, to interact with the simulation, and to study the effects of design variations, while the simulation is being carried out. An industry standard network computing system is employed to interface the parallel processor that carries out the dynamic simulation and a high speed graphics processor that creates and displays animated graphics. Multi-windowing and graphics processing methods that are employed to provide visualization and operator control of the simulation are presented. A vehicle dynamics application is used to illustrate the methods developed and to analyze communication bandwidth requirements for implementation with a compute server that is remote from the graphics workstation. It is shown that, while massive data sets are generated on the parallel processor during realtime dynamic simulation and extensive graphics data are generated on the workstation during rendering and display, data communication requirements between the compute server and the workstation are well within the capability of existing networks.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3868
Author(s):  
Ma ◽  
Song ◽  
Huang ◽  
Guo ◽  
Yuan ◽  
...  

A zero-cross detection algorithm was proposed for the cavity-length interrogation of fiber-optic Fabry–Perot (FP) sensors. The method can avoid the inaccuracy of peak determination in the conventional peak-to-peak method for the cavity-length interrogation of fiber-optic FP sensors caused by the slow variation of the spectral power density in peak neighboring regions. Both simulations and experiments were carried out to investigate the feasibility and performance of the zero-cross detection algorithm. Fiber-optic FP sensors with cavity lengths in the range of 150–1000 μm were successfully interrogated with a maximum error of 0.083 μm.


Author(s):  
Juncheng Xu ◽  
G.R. Pickrell ◽  
K.L. Cooper ◽  
Po Zhang ◽  
Anbo Wang

Sign in / Sign up

Export Citation Format

Share Document