Hardware architecture for high-speed real-time dynamic programming applications

2008 ◽  
Vol 2 (3) ◽  
pp. 164 ◽  
Author(s):  
B. Matthews ◽  
I. Elhanany
2010 ◽  
Vol 34-35 ◽  
pp. 1314-1318
Author(s):  
Xin Hua Wang ◽  
Shou Qiang Hu ◽  
Qian Yi Ya ◽  
Shu Wen Sun ◽  
Xiu Xia Cao

Structure and principle of a new kind of diphase opposition giant magnetostrictive self-sensing actuator (SSA for short) is introduced, for which a kind of double outputs high-precision NC stable voltage power is designed. With the method of combining with the hardware design and the software setting, the controllability and reliability of the actuator are greatly improved. And the whole design becomes more reasonable, which saves the cost and improves the practicability. In addition, based on the micro controller unit (MCU) with high-speed control, the scheme design of the real-time separation circuit for dynamic balance signal can effectively identify out and pick up the self-sensing signal which changes from foreign pressure feed back. Then the SSA real-time, dynamic and accurately control is realized. The experiment results show that the voltage power can high-speed and accurately output both output voltages with high current, and that the self-sensing signal decoupling circuit can isolate the self-sensing signals without distortion


Author(s):  
M. W. Dubetz ◽  
J. G. Kuhl ◽  
E. J. Haug

Abstract This paper presents a network based implementation of real-time dynamic simulation methods. An interactive animated graphics environment is presented that permits the engineer to view high quality animated graphics rendering of dynamic performance, to interact with the simulation, and to study the effects of design variations, while the simulation is being carried out. An industry standard network computing system is employed to interface the parallel processor that carries out the dynamic simulation and a high speed graphics processor that creates and displays animated graphics. Multi-windowing and graphics processing methods that are employed to provide visualization and operator control of the simulation are presented. A vehicle dynamics application is used to illustrate the methods developed and to analyze communication bandwidth requirements for implementation with a compute server that is remote from the graphics workstation. It is shown that, while massive data sets are generated on the parallel processor during realtime dynamic simulation and extensive graphics data are generated on the workstation during rendering and display, data communication requirements between the compute server and the workstation are well within the capability of existing networks.


Author(s):  
Antonis C. Kakas ◽  
David Cohn ◽  
Sanjoy Dasgupta ◽  
Andrew G. Barto ◽  
Gail A. Carpenter ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6609
Author(s):  
Peng Zhang ◽  
Ying Wang ◽  
Yuru Chen ◽  
Xiaohua Lei ◽  
Yi Qi ◽  
...  

A fast real-time demodulation method based on the coarsely sampled spectrum is proposed for transient signals of fiber optic extrinsic Fabry-Perot interferometers (EFPI) sensors. The feasibility of phase demodulation using a coarse spectrum is theoretically analyzed. Based on the coarse spectrum, fast Fourier transform (FFT) algorithm is used to roughly estimate the cavity length. According to the rough estimation, the maximum likelihood estimation (MLE) algorithm is applied to calculate the cavity length accurately. The dense wavelength division multiplexer (DWDM) is used to split the broadband spectrum into the coarse spectrum, and the high-speed synchronous ADC collects the spectrum. The experimental results show that the system can achieve a real-time dynamic demodulation speed of 50 kHz, a static measurement root mean square error (RMSE) of 0.184 nm, and a maximum absolute and relative error distribution of 15 nm and 0.005% of the measurement cavity length compared with optical spectrum analyzers (OSA).


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 228 ◽  
Author(s):  
Aman Kalia ◽  
Brian Fabien

Extended range electric vehicles (EREVs) operate both as an electric vehicle (EV) and as a hybrid electric vehicle (HEV). As a hybrid, the on-board range extender (REx) system provides additional energy to increase the feasible driving range. In this paper, we evaluate an experimental research EREV based on the 2016 Chevrolet Camaro platform for optimal energy management control. We use model-in-loop and software-in-loop environments to validate the data-driven power loss model of the research vehicle. A discussion on the limitations of conventional energy management control algorithms is presented. We then propose our algorithm derived from adaptive real-time dynamic programming (ARTDP) with a distance constraint for energy consumption optimization. To achieve a near real-time functionality, the algorithm recomputes optimal parameters by monitoring the energy storage system’s (ESS) state of charge deviations from the previously computed optimal trajectory. The proposed algorithm is adaptable to variability resulting from driving behavior or system limitations while maintaining the target driving range. The net energy consumption evaluation shows a maximum improvement of 9.8% over the conventional charge depleting/charge sustaining (CD/CS) algorithm used in EREVs. Thus, our proposed algorithm shows adaptability and fault tolerance while being close to the global optimal solution.


Sign in / Sign up

Export Citation Format

Share Document