scholarly journals Sensor Selection and State Estimation for Unobservable and Non-Linear System Models

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7492
Author(s):  
Thijs Devos ◽  
Matteo Kirchner ◽  
Jan Croes ◽  
Wim Desmet ◽  
Frank Naets

To comply with the increasing complexity of new mechatronic systems and stricter safety regulations, advanced estimation algorithms are currently undergoing a transformation towards higher model complexity. However, more complex models often face issues regarding the observability and computational effort needed. Moreover, sensor selection is often still conducted pragmatically based on experience and convenience, whereas a more cost-effective approach would be to evaluate the sensor performance based on its effective estimation performance. In this work, a novel estimation and sensor selection approach is presented that is able to stabilise the estimator Riccati equation for unobservable and non-linear system models. This is possible when estimators only target some specific quantities of interest that do not necessarily depend on all system states. An Extended Kalman Filter-based estimation framework is proposed where the Riccati equation is projected onto an observable subspace based on a Singular Value Decomposition (SVD) of the Kalman observability matrix. Furthermore, a sensor selection methodology is proposed, which ranks the possible sensors according to their estimation performance, as evaluated by the error covariance of the quantities of interest. This allows evaluating the performance of a sensor set without the need for costly test campaigns. Finally, the proposed methods are evaluated on a numerical example, as well as an automotive experimental validation case.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akshaykumar Naregalkar ◽  
Subbulekshmi Durairaj

Abstract A continuous stirred tank reactor (CSTR) servo and the regulatory control problem are challenging because of their highly non-linear nature, frequent changes in operating points, and frequent disturbances. System identification is one of the important steps in the CSTR model-based control design. In earlier work, a non-linear system model comprises a linear subsystem followed by static nonlinearities and represented with Laguerre filters followed by the LSSVM (least squares support vector machines). This model structure solves linear dynamics first and then associated nonlinearities. Unlike earlier works, the proposed LSSVM-L (least squares support vector machines and Laguerre filters) Hammerstein model structure solves the nonlinearities associated with the non-linear system first and then linear dynamics. Thus, the proposed Hammerstein’s model structure deals with the nonlinearities before affecting the entire system, decreasing the model complexity and providing a simple model structure. This new Hammerstein model is stable, precise, and simple to implement and provides the CSTR model with a good model fit%. Simulation studies illustrate the benefit and effectiveness of the proposed LSSVM-L Hammerstein model and its efficacy as a non-linear model predictive controller for the servo and regulatory control problem.


1990 ◽  
Vol 2 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Ph. B�nilan ◽  
D. Blanchard ◽  
H. Ghidouche

Sign in / Sign up

Export Citation Format

Share Document