scholarly journals High Performance Predictable Quantum Efficient Detector Based on Induced-Junction Photodiodes Passivated with SiO2/SiNx

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7807
Author(s):  
Ozhan Koybasi ◽  
Ørnulf Nordseth ◽  
Trinh Tran ◽  
Marco Povoli ◽  
Mauro Rajteri ◽  
...  

We performed a systematic study involving simulation and experimental techniques to develop induced-junction silicon photodetectors passivated with thermally grown SiO2 and plasma-enhanced chemical vapor deposited (PECVD) SiNx thin films that show a record high quantum efficiency. We investigated PECVD SiNx passivation and optimized the film deposition conditions to minimize the recombination losses at the silicon–dielectric interface as well as optical losses. Depositions with varied process parameters were carried out on test samples, followed by measurements of minority carrier lifetime, fixed charge density, and optical absorbance and reflectance. Subsequently, the surface recombination velocity, which is the limiting factor for internal quantum deficiency (IQD), was obtained for different film depositions via 2D simulations where the measured effective lifetime, fixed charge density, and substrate parameters were used as input. The quantum deficiency of induced-junction photodiodes that would be fabricated with a surface passivation of given characteristics was then estimated using improved 3D simulation models. A batch of induced-junction photodiodes was fabricated based on the passivation optimizations performed on test samples and predictions of simulations. Photodiodes passivated with PECVD SiNx film as well as with a stack of thermally grown SiO2 and PECVD SiNx films were fabricated. The photodiodes were assembled as light-trap detector with 7-reflections and their efficiency was tested with respect to a reference Predictable Quantum Efficient Detector (PQED) of known external quantum deficiency. The preliminary measurement results show that PQEDs based on our improved photodiodes passivated with stack of SiO2/SiNx have negligible quantum deficiencies with IQDs down to 1 ppm within 30 ppm measurement uncertainty.

2002 ◽  
Vol 47 (2) ◽  
pp. 284-291 ◽  
Author(s):  
Erik M. Shapiro ◽  
Arijitt Borthakur ◽  
Alexander Gougoutas ◽  
Ravinder Reddy

2002 ◽  
pp. 387-395
Author(s):  
Robert J. Wilkins ◽  
Bethan Hopewell ◽  
Jill P. G. Urban

1988 ◽  
Vol 254 (3) ◽  
pp. F364-F373 ◽  
Author(s):  
M. Wolgast ◽  
G. Ojteg

In the classical Starling model the hydrostatic pressure in the pores is generally lower than that in capillary plasma, a phenomenon that necessitates the assumption of a rigid porous membrane. In flexible gel membranes, the capillary pressure is suggested to be balanced by a gel swelling pressure generated by negative fixed charges. Regarding the fluid transfer, the transmembranous electrical potential gradient will generate a net driving electroosmotic force. This force will be numerically similar to the net driving Starling force in small pores, but distinctly different in large pores. From previous data on the hydrostatic and colloid osmotic forces, the fixed charge density at the two interfaces of 1) the glomerular and 2) the peritubular capillary membrane were calculated and used to predict the flux of a series of charged protein probes. The close fit to the experimental data in both the capillary beds is in line with the gel concept presented. The gel concept (but hardly a rigid membrane) explains the ability of capillary membranes to alter their permeability in response to external forces. Gel membranes can furthermore be predicted to have a self-rinsing ability, as entrapped proteins will increase the local fixed charge density, leading to fluid entry into the region between the particle and the pore rim, which by consequent widening of the channel will facilitate extrusion of trapped proteins.


1983 ◽  
Vol &NA; (177) ◽  
pp. 283???288 ◽  
Author(s):  
ISAO HASEGAWA ◽  
SHINYA KURIKI ◽  
SHIGEO MATSUNO ◽  
GORO MATSUMOTO

Spine ◽  
1989 ◽  
Vol 14 (11) ◽  
pp. 1226-1233 ◽  
Author(s):  
SATORU KITANO ◽  
HARUO TSUJI ◽  
NORIKAZU HIRANO ◽  
AKIMI SANO ◽  
NOBUO TERAHATA

2009 ◽  
Vol 74 ◽  
pp. 21-24
Author(s):  
Fu Kun Lai ◽  
Hua Li

A continuum multiphysics theory is presented for simulation of the ionic-strength-sensitive hydrogel and surrounding solution. The theory considers the coupled effects of chemical, electrical and mechanical multi-energy domains on the swelling behavior of the ionic-strength-sensitive hydrogel and is thus termed the multi-effect-coupling ionic-strength-stimuli (MECis) model. The MECis model consists of several governing equations, including Nernst-Planck flux system, Poisson equation, fixed charge density and mechanical equilibrium equation, in which the effect of the ionic strength is incorporated into the governing equation of diffusive flux and fixed charge. The theory is capable of simulating the swelling/shrinking behavior of smart hydrogel in buffer solution subject to the change in the ionic strength, and providing the distribution of the ionic concentration and electrical potential for applications of BioMEMS design. Apart from the ionic strength as the main stimulus, the influence of several parameters is discussed in detail, including the initial fixed charge density and Young’s modulus of the hydrogel.


Sign in / Sign up

Export Citation Format

Share Document