scholarly journals Volitional EMG Estimation Method during Functional Electrical Stimulation by Dual-Channel Surface EMGs

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8015
Author(s):  
Joonyoung Jung ◽  
Dong-Woo Lee ◽  
Yong Ki Son ◽  
Bae Sun Kim ◽  
Hyung Cheol Shin

We propose a novel dual-channel electromyography (EMG) spatio-temporal differential (DESTD) method that can estimate volitional electromyography (vEMG) signals during time-varying functional electrical stimulation (FES). The proposed method uses two pairs of EMG signals from the same stimulated muscle to calculate the spatio-temporal difference between the signals. We performed an experimental study with five healthy participants to evaluate the vEMG signal estimation performance of the DESTD method and compare it with that of the conventional comb filter and Gram–Schmidt methods. The normalized root mean square error (NRMSE) values between the semi-simulated raw vEMG signal and vEMG signals which were estimated using the DESTD method and conventional methods, and the two-tailed t-test and analysis of variance were conducted. The results showed that under the stimulation of the gastrocnemius muscle with rapid and dynamically modulated stimulation intensity, the DESTD method had a lower NRMSE compared to the conventional methods (p< 0.01) for all stimulation intensities (maximum 5, 10, 15, and 20 mA). We demonstrated that the DESTD method could be applied to wearable EMG-controlled FES systems because it estimated vEMG signals more effectively compared to the conventional methods under dynamic FES conditions and removed unnecessary FES-induced EMG signals.

2017 ◽  
Vol 113 ◽  
pp. 33-39
Author(s):  
B. Dries ◽  
B. Vanwanseele ◽  
I. Jonkers ◽  
J. Vander Sloten ◽  
E. Van der Vekens ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bethel A. C. Osuagwu ◽  
Emily Whicher ◽  
Rebecca Shirley

AbstractNeurophysiological theories and past studies suggest that intention driven functional electrical stimulation (FES) could be effective in motor neurorehabilitation. Proportional control of FES using voluntary EMG may be used for this purpose. Electrical artefact contamination of voluntary electromyogram (EMG) during FES application makes the technique difficult to implement. Previous attempts to date either poorly extract the voluntary EMG from the artefacts, require a special hardware or are unsuitable for online application. Here we show an implementation of an entirely software-based solution that resolves the current problems in real-time using an adaptive filtering technique with an optional comb filter to extract voluntary EMG from muscles under FES. We demonstrated that unlike the classic comb filter approach, the signal extracted with the present technique was coherent with its noise-free version. Active FES, the resulting EMG-FES system was validated in a typical use case among fifteen patients with tetraplegia. Results showed that FES intensity modulated by the Active FES system was proportional to intentional movement. The Active FES system may inspire further research in neurorehabilitation and assistive technology.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Shmuel Springer ◽  
Jean-Jacques Vatine ◽  
Ronit Lipson ◽  
Alon Wolf ◽  
Yocheved Laufer

The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (). In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiuyuan Zheng ◽  
Danfeng Chen ◽  
Tiebin Yan ◽  
Dongmei Jin ◽  
Zhiqiang Zhuang ◽  
...  

Functional electrical stimulation can improve motor function after stroke. The mechanism may involve activity-dependent plasticity and brain remodeling. The aim of our study was to investigate the effectiveness of a patterned electrical stimulation FES mimic to gait in motor recovery among stroke survivors and to investigate possible mechanisms through brain fMRI. Forty-eight subjects were recruited and randomly assigned to a four-channel FES group (n=18), a placebo group (n=15), or a dual-channel FES group (n=15). Stimulation lasted for 30 minutes in each session for 3 weeks. All of the subjects were assessed at baseline and after weeks 1, 2, and 3. The assessments included the Fugl-Meyer Assessment, the Postural Assessment Scale for Stroke Patients, Brunel’s Balance Assessment, the Berg Balance Scale, and the modified Barthel Index. Brain fMRI were acquired before and after the intervention. All of the motor assessment scores significantly increased week by week in all the three groups. The four-channel group showed significantly better improvement than the dual-channel group and placebo groups. fMRI showed that fractional anisotropy was significantly increased in both the four-channel and dual-channel groups compared with the placebo group and fiber bundles had increased significantly on the ipsilateral side, but not on the contralateral side in the group given four-channel stimulation. In conclusion, when four-channel FES induces cycling movement of the lower extremities based on a gait pattern, it may be more effective in promoting motor recovery and induce more plastic changes and brain remodeling than two-channel stimulation. This trial is registered with clinical trial registration unique identifier ChiCTR-TRC-11001615.


Sign in / Sign up

Export Citation Format

Share Document