gait symmetry
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 96)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Faustyna Manikowska ◽  
Sabina Brazevic ◽  
Anna Krzyżańska ◽  
Marek Jóźwiak

Background: Gait dysfunction is a crucial factor that restricts independence and quality of life in children with cerebral palsy (CP). Gait training based on robotic-assisted therapy (RAT) is widely used, but information about effectiveness and ideal patient profile is not sufficient. Aim of this study was to assess the effect of RAT on gait parameters in spastic children with CP, and to determine whether changes in gait parameters are different among patients on different ambulatory levels.Method: A total of 26 children with bilateral spastic CP were divided into two groups based on their functional ability: non-assisted ambulator (NAS) or assisted ambulator (AS); and underwent a RAT program (30 training sessions of RAT during 10 weeks). Gait analysis was performed: before the therapy (t1), right after (t2), and 6 weeks later (t3).Results: No significant changes in spatiotemporal parameters or gait deviation index at t2 or t3. Double support symmetry significantly improved (t1 vs. t3, p = 0.03) for the whole group (NAS + AS). Walking speed symmetry significantly improved (t2 vs. t3, p = 0.02) for group AS.Conclusion: RAT based on our protocol did not change spatiotemporal parameters and kinematics of walking except limited improvement in some aspects of gait symmetry. We did not find differences in changes in selected objective gait parameters among children with CP in different ambulatory levels.


Author(s):  
Chiara Basla ◽  
Lauren Chee ◽  
Giacomo Valle ◽  
Stanisa Raspopovic

Abstract Objective. Lower limb amputees suffer from a variety of functional deficits related to the absence of sensory communication between the central nervous system and the lost extremity. Indeed, they experience high risk of falls, asymmetric walking and balance, and low prosthesis embodiment, that significantly decrease their quality of life. Presently, there are no commercially available devices able to provide sensory feedback to leg amputees. Recently, some invasive solutions (i.e. requiring a surgery) have been proposed by different research groups, however a non-invasive effective alternative exploitable in everyday life is still missing. Approach. To address this need we developed and tested a lightweight, non-invasive, wearable technology (NeuroLegs) providing sensory (i.e. knee angle joint and tactile) feedback to the users through electro-cutaneous stimulation. A user-friendly GUI and mobile App have been developed to easily calibrate and control the system. Standard mechanical and electrical tests were performed to assess the safety and reliability of the technology. Main results. No mechanical failures, stable communication among system parts and a long-lasting battery (>23h) were demonstrated. The NeuroLegs system was then verified in terms of accuracy in measuring relevant gait parameters in healthy participants. A high temporal reliability was found when detecting stride features (important for the real-time configuration) with a correct match to the walking cadence, in all assessed walking conditions. The effectiveness of the NeuroLegs system at improving walking of three transfemoral amputees was then verified in movement laboratory tests. Increased temporal gait symmetry and augmented confidence were found. Stepping outside from the lab, Neurolegs was successfully exploited by a transfemoral amputee in CYBATHLON Global Edition 2020 in several challenging situations related to daily-living activities. Significance. Our results demonstrate that the NeuroLegs system provides the user with useful sensory information that can be successfully exploited in different walking conditions of daily life.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261140
Author(s):  
Paul Gonzalo Arauz ◽  
María-Gabriela García ◽  
Mauricio Velez ◽  
Cesar León ◽  
Francisco Velez ◽  
...  

The effects of treadmill workstation use on kinematic gait symmetry and computer work performance remain unclear. The purpose of this pilot study was to analyze the effects of treadmill workstation use on lower body motion symmetry while performing a typing task when compared to overground and treadmill walking. The lower body motion of ten healthy adults (6 males and 4 females) was recorded by a motion capture system. Hip, knee, and ankle joint rotations were computed and compared for each condition. Despite comparable lower body kinematic gait asymmetries across conditions, asymmetric knee flexion motions at early gait cycle were only found in treadmill workstation users (left knee significantly more flexed than the right one). This demonstrates that the interaction between walking and another task is dependent on the task cognitive content. Our findings suggest that lower body kinematic gait symmetry may be influenced by the use of treadmill workstations.


2021 ◽  
Author(s):  
Julio Salvador Lora-Millan ◽  
Francisco José Sanchez-Cuesta ◽  
Juan Pablo Romero ◽  
Juan C. Moreno ◽  
Eduardo Rocon

Abstract Background: Hemiparetic gait is characterized by strong asymmetries that could severely affect the quality of life of stroke survivors. This asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the non-paretic limb. In this study, we aim to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and non-paretic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active Knee-Ankle-Foot Orthosis able to naturally assist the paretic limb of hemiparetic patients during gait.Methods: REFLEX uses an Adaptive Frequency Oscillator to estimate the continuous gait phase of the non-paretic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) Replicating the movement of the sound leg or (2) Inducing a healthy gait pattern on the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. Results: Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease of the compensatory strategies developed by the non-paretic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the non-paretic limb.Conclusions: This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of hemiparetic patients based on the movement of their non-paretic one is a valuable strategy for reducing the compensatory mechanisms developed by their sound limb.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7217
Author(s):  
Dmitry V. Skvortsov ◽  
Sergey N. Kaurkin ◽  
Galina E. Ivanova

Walking function disorders are typical for patients after cerebral stroke. Biofeedback technology (BFB) is currently considered effective and promising for training walking function, including in patients after cerebral stroke. Most studies recognize that BFB training is a promising tool for improving walking function; however, the data on the use of highly selective walking parameters for BFB training are very limited. The aim of our study was to investigate the feasibility of using BFB training targeting one of the basic parameters of gait symmetry—stance phase duration—in cerebral stroke patients in the early recovery period. The study included 20 hemiparetic patients in the early recovery period after the first hemispheric ischemic stroke. The control group included 20 healthy subjects. The BFB training and biomechanical analysis of walking (before and after all BFB sessions) were done using an inertial system. The mean number of BFB sessions was nine (from 8 to 11) during the three weeks in clinic. There was not a single negative response to BFB training among the study patients, either during the sessions or later. The spatiotemporal parameters of walking showed the whole syndrome complex of slow walking and typical asymmetry of temporal walking parameters, and did not change significantly as a result of the study therapy. The changes were more significant for the functioning of hip and knee joints. The contralateral hip amplitude returned to the normal range. For the knee joint, the amplitude of the first flexion increased and the value of the amplitude of hyperextension decreased in the middle of the stance phase. Concerning muscle function, the observed significant decrease in the function of m. Gastrocnemius and the hamstring muscles on the paretic side remained without change at the end of the treatment course. We obtained positive dynamics of the biomechanical parameters of walking in patients after the BFB training course. The feasibility and efficacy of their use for targeted correction need further research.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Rafael Escamilla-Nunez ◽  
Harry Sivasambu ◽  
Jan Andrysek

BACKGROUND: Gait symmetry is the degree of equality of biomechanical parameters between limbs within a gait cycle. Human gait is highly symmetrical; however, in the presence of pathology, gait often lacks symmetry. Biofeedback (BFB) systems have demonstrated the potential to reduce gait asymmetry, improve gait function, and benefit overall long-term musculoskeletal health. OBJECTIVE(S): The aim of this study was to develop a BFB system and evaluate three unique BFB strategies, including bidirectional control – constant vibration (BC), bidirectional control – variable vibration (BV), and unidirectional control – variable vibration (UV) relevant to gait symmetry. The assessed feedback strategies were a combination of vibration frequency/amplitude levels, vibration thresholds, and vibrotactile stimuli from one and two vibrating motors (tactors). Learning effect and short-term retention were also assessed. METHODOLOGY: Testing was performed using a custom BFB system that induces stance time asymmetries to modulate temporal gait symmetry. The BFB system continuously monitors specific gait events (heel-strike and toe-off) and calculates the symmetry ratio, based on the stance time of both limbs to provide real-time biomechanical information via the vibrating motors. Overall walking performance of ten (n=10) able-bodied individuals (age 24.8 ± 4.4 years) was assessed via metrics of symmetry ratio, symmetry ratio error, walking speed, and motor's vibration percentages. FINDINGS: All participants utilized BFB somatosensory information to modulate their symmetry ratio. UV feedback produced a greater change in symmetry ratio, and it came closer to the targeted symmetry ratio. Learning or short-term retention effects were minimal. Walking speeds were reduced with feedback compared to no feedback; however, UV walking speeds were significantly faster compared to BV and BC. CONCLUSION: The outcomes of this study provide new insights into the development and implementation of feedback strategies for gait retraining BFB systems that may ultimately benefit individuals with pathological gait. Future work should assess longer-term use and long-term learning and retention effects of BFB systems in the populations of interest. Layman's Abstract Healthy walking is usually highly symmetrical with the same movements occurring on both sides of the body. However, certain disorders can cause abnormal and asymmetrical walking movements. Biofeedback can improve the movements during walking. This study used a custom biofeedback system to test three ways of applying biofeedback including having one and two motors that vibrated in unique ways. The biofeedback system was set up to guide participants to change their normal walking pattern to be less symmetrical. Walking movements of ten young able-bodied individuals were measured while walking with the biofeedback system. The results showed a change in walking symmetry for all participants. Using a single vibrating motor resulted in the greatest changes in walking symmetry. The changes in walking symmetry occurred only when using biofeedback, and walking patterns quickly returned to normal when the biofeedback was turned off. Overall, all feedback methods caused the users to walk slower than their typical walking speed. These findings provide important new information about the changes in walking caused by different biofeedback methods. Future work should evaluate long-term effects of biofeedback methods in the populations of interest. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/36744/28677 How To Cite: Escamilla-Nunez R, Sivasambu H, Andrysek J. Exploration of vibrotactile biofeedback strategies to induce stance time asymmetries. Canadian Prosthetics & Orthotics Journal. 2022; Volume 5, Issue 1, No.2. https://doi.org/10.33137/cpoj.v5i1.36744 Corresponding Author: Rafael Escamilla-Nunez, Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.E-Mail: [email protected] ID: https://orcid.org/0000-0002-2739-878X


2021 ◽  
Vol 10 (21) ◽  
pp. 4803
Author(s):  
Jaehoon Kim ◽  
Jaehoon Choi ◽  
Junhyung Kim ◽  
Taehee Jo ◽  
Ilseon Hwang ◽  
...  

We performed an animal study to identify the techniques associated with the best muscle healing outcomes in cleft lip/palate surgery. The right triceps of thirty adult male Sprague–Dawley rats were cut and repaired by three different suture techniques: simple (n = 10), overlapping (n = 10), and splitting sutures (n = 10). Muscle tissues were isolated from 5 rats per group 1 and 8 weeks postoperation. The inflammatory response and muscle fiber healing were evaluated by hematoxylin and eosin (H&E) staining, Western blotting, immunohistochemistry for TNF-α and IL-1β, and immunofluorescence for laminin and MyoD. Grip strength (N/100 g) and spatial gait symmetry were evaluated before surgery and 1, 2, 4 and 8 weeks postoperation. Eight weeks postoperation, grip force per weight was significantly higher in the simple suture (median, 3.49; IQR, 3.28–3.66) and overlapping groups (median, 3.3; IQR, 3.17–3.47) than the splitting group (median, 2.91; IQR, 2.76–3.05). There was no significant difference in range of motion between groups. The simple group exhibited significant remission of inflammation by H&E staining and lower expression of TNF-α and IL-1β than the other groups by Western blotting and immunohistochemistry. Immunofluorescence revealed stronger expression of MyoD and weaker expression of laminin in the splitting group than in the other groups at week 8, indicating prolonged inflammation and healing followed by poor muscle fiber remodeling. Simple and overlapping sutures demonstrated similar functional healing, although greater inflammation and failure to maintain a thicker muscle belly were observed in the overlapping suture group compared with the simple suture group. Therefore, reconstruction of the philtral column with overlapping sutures alone may result in limited long-term fullness, and additional procedures may be needed.


Author(s):  
Hannah Lena Siebers ◽  
Waleed Alrawashdeh ◽  
Marcel Betsch ◽  
Filippo Migliorini ◽  
Frank Hildebrand ◽  
...  

Abstract Background Symmetry is a sign of physiological and healthy movements, as pathologies are often described by increased asymmetries. Nevertheless, based on precisely measured data, even healthy individuals will show small asymmetries in their movements. However, so far there do not exist commonly accepted methods and reference values for gait symmetry in a healthy collective. Therefore, a comparison and presentation of reference values calculated by 3 different methods of symmetry indices for lower limb joint angles during walking, ascending, and descending stairs were shown. Methods Thirty-five healthy participants were analyzed during walking, ascending, and descending stairs with the help of the inertial measurement system MyoMotion. Using the normalized symmetry index (SInorm), the symmetry index (SI) as the integral of the symmetry function, and another normalized symmetry index (NSI), the symmetry of joint angles was evaluated. For statistical evaluation of differences, repeated measurement models and Bland–Altman-Plots were used. Results Apart from a bias between the symmetry indices, they were comparable in the predefined limits of 5%. For all parameters, significantly higher asymmetry was found for ankle dorsi/-plantarflexion, compared with the hip and knee flexion. Moreover, the interaction effect of the joint and movement factors was significant, with an increased asymmetry of the hip and knee during descending stairs greater than while ascending stairs or walking, but a reduced symmetry of the ankle during walking when compared to descending. The movement only showed significant effects when analyzing the SInorm. Conclusion Even for healthy individuals, small asymmetries of movements were found and presented as reference values using 3 different symmetry indices for dynamic lower limb joint angles during 3 different movements. For the quantification of symmetrical movements differences between the joints, movements, and especially their interaction, are necessary to be taken into account. Moreover, a bias between the methods should be noted. The potential for each presented symmetry index to identify pathological movements or track a rehabilitation process was shown but has to be proven in further research. Trial registration: DRKS00025878.


Sign in / Sign up

Export Citation Format

Share Document