scholarly journals In Situ Real-Time Quantitative Determination in Electrochemical Nuclear Magnetic Resonance Spectroscopy

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 282
Author(s):  
Min Liu ◽  
Zu-Rong Ni ◽  
Hui-Jun Sun ◽  
Shuo-Hui Cao ◽  
Zhong Chen

For the purpose of acquiring highly sensitive and differential spectra in in situ electrochemical nuclear magnetic resonance (EC-NMR) spectroscopy, uniform distributions of amplitudes and phases of radio frequency (RF) fields in the sample are needed for consistent flip angles of all nuclei under scrutiny. However, intrinsic electromagnetic incompatibility exists between such requirements with electric properties of the conductive material in an electrolytic cell, including metallic electrodes and ionic electrolytes. This proposed work presents the adverse repercussions of gradually varying electrolyte conductivity, which is strongly associated with the change of ion concentrations in a real-time electrochemical reaction, on spatial distributions of RF field amplitude and phase in the detective zone of an NMR probe coil. To compensate for such a non-linear trend of the spatial dependent distribution, we eliminate different excitation effects of the RF field on the build-in external standard and the electrolyte both situated in nearly the same detection area, as well as promote the greater accuracy of quantitative determination of reactant concentrations. The reliability and effectiveness of the improved in situ EC-qNMR (quantitative NMR) method are confirmed by the real-time monitoring of the electrochemical advanced oxidation process for phenol, in which instant concentrations of reactants and products are detected simultaneously to verify the degradation reaction scheme of phenol.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1416 ◽  
Author(s):  
Mohamed Haouas

The employment of nuclear magnetic resonance (NMR) spectroscopy for studying crystalline porous materials formation is reviewed in the context of the development of in situ methodologies for the observation of the real synthesis medium, with the aim of unraveling the nucleation and growth processes mechanism. Both liquid and solid state NMR techniques are considered to probe the local environment at molecular level of the precursor species either soluble in the liquid phase or present in the reactive gel. Because the mass transport between the liquid and solid components of the heterogeneous system plays a key role in the synthesis course, the two methods provide unique insights and are complementary. Recent technological advances for hydrothermal conditions NMR are detailed and their applications to zeolite and related materials crystallization are illustrated. Achievements in the field are exemplified with some representative studies of relevance to zeolites, aluminophosphate zeotypes, and metal-organic frameworks.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 641-653 ◽  
Author(s):  
Ian Swyer ◽  
Sebastian von der Ecken ◽  
Bing Wu ◽  
Amy Jenne ◽  
Ronald Soong ◽  
...  

We describe a two-plate digital microfluidic method for interfacing with nuclear magnetic resonance spectroscopy (DMF-NMR) for microscale chemical analysis.


1995 ◽  
Vol 269 (2) ◽  
pp. C318-C322 ◽  
Author(s):  
S. K. Song ◽  
R. S. Hotchkiss ◽  
J. Neil ◽  
P. E. Morris ◽  
C. Y. Hsu ◽  
...  

Fluorine-19-nuclear magnetic resonance (19F-NMR) spectroscopic detection of the NMR-active Ca2+ indicator 5-fluoro-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5F-BAPTA) is one method for measuring cytosolic free Ca2+ concentration ([Ca2+]i) and has been used previously to measure [Ca2+]i in isolated cells and perfused organs. The aim of the present investigation was to demonstrate the feasibility of determining [Ca2+]i in vivo and in situ using 19F-NMR and 5F-BAPTA. Experiments were performed on male Sprague-Dawley rats with a surface-coil antenna employed for NMR interrogation. The Ca2+ indicator, 5F-BAPTA, was infused either intravenously (kidney, spleen) or intraventricularly (brain) as a 100 mg/ml solution of the cell-permeant acetoxymethyl ester (5F-BAPTA-AM) in dimethyl sulfoxide. Rats tolerated intravenous infusion without evident change in mean arterial blood pressure. In all tissues examined, kidney, spleen, and brain, [Ca2+]i was approximately 200 nM. To our knowledge, these results represent the first in vivo and in situ determinations of [Ca2+]i employing 19F-NMR.


Sign in / Sign up

Export Citation Format

Share Document