scholarly journals An Efficient Multilevel Probabilistic Model for Abnormal Traffic Detection in Wireless Sensor Networks

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 410
Author(s):  
Muhammad Altaf Khan ◽  
Moustafa M. Nasralla ◽  
Muhammad Muneer Umar ◽  
Ghani-Ur-Rehman ◽  
Shafiullah Khan ◽  
...  

Wireless sensor networks (WSNs) are low-cost, special-purpose networks introduced to resolve various daily life domestic, industrial, and strategic problems. These networks are deployed in such places where the repairments, in most cases, become difficult. The nodes in WSNs, due to their vulnerable nature, are always prone to various potential threats. The deployed environment of WSNs is noncentral, unattended, and administrativeless; therefore, malicious attacks such as distributed denial of service (DDoS) attacks can easily be commenced by the attackers. Most of the DDoS detection systems rely on the analysis of the flow of traffic, ultimately with a conclusion that high traffic may be due to the DDoS attack. On the other hand, legitimate users may produce a larger amount of traffic known, as the flash crowd (FC). Both DDOS and FC are considered abnormal traffic in communication networks. The detection of such abnormal traffic and then separation of DDoS attacks from FC is also a focused challenge. This paper introduces a novel mechanism based on a Bayesian model to detect abnormal data traffic and discriminate DDoS attacks from FC in it. The simulation results prove the effectiveness of the proposed mechanism, compared with the existing systems.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Katarzyna Mazur ◽  
Bogdan Ksiezopolski ◽  
Radoslaw Nielek

The growing popularity of wireless sensor networks increases the risk of security attacks. One of the most common and dangerous types of attack that takes place these days in any electronic society is a distributed denial of service attack. Due to the resource constraint nature of mobile sensors, DDoS attacks have become a major threat to its stability. In this paper, we established a model of a structural health monitoring network, being disturbed by one of the most common types of DDoS attacks, the flooding attack. Through a set of simulations, we explore the scope of flood-based DDoS attack problem, assessing the performance and the lifetime of the network under the attack condition. To conduct our research, we utilized the Quality of Protection Modeling Language. With the proposed approach, it was possible to examine numerous network configurations, parameters, attack options, and scenarios. The results of the carefully performed multilevel analysis allowed us to identify a new kind of DDoS attack, the delayed distributed denial of service, by the authors, referred to as DDDoS attack. Multilevel approach to DDoS attack analysis confirmed that, examining endangered environments, it is significant to take into account many characteristics at once, just to not overlook any important aspect.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1179
Author(s):  
Carolina Del-Valle-Soto ◽  
Carlos Mex-Perera ◽  
Juan Arturo Nolazco-Flores ◽  
Alma Rodríguez ◽  
Julio C. Rosas-Caro ◽  
...  

Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
S. Raja Rajeswari ◽  
V. Seenivasagam

Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.


Sign in / Sign up

Export Citation Format

Share Document