scholarly journals GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements

Sensors ◽  
2009 ◽  
Vol 9 (3) ◽  
pp. 2017-2034 ◽  
Author(s):  
Saffet Erdoğan ◽  
Muhammed Şahin ◽  
İbrahim Tiryakioğlu ◽  
Engin Gülal ◽  
Ali Kazım Telli
Keyword(s):  
1998 ◽  
Vol 294 (3-4) ◽  
pp. 237-252 ◽  
Author(s):  
Hans-Gert Kahle ◽  
Christian Straub ◽  
Robert Reilinger ◽  
Simon McClusky ◽  
Robert King ◽  
...  

2021 ◽  
Vol 51 (3) ◽  
pp. 225-243
Author(s):  
Abhishek YADAV ◽  
Suresh KANNAUJIYA ◽  
Prashant Kumar CHAMPATI RAY ◽  
Rajeev Kumar YADAV ◽  
Param Kirti GAUTAM

GPS measurements have proved extremely useful in quantifying strain accumulation rate and assessing seismic hazard in a region. Continuous GPS measurements provide estimates of secular motion used to understand the earthquake and other geodynamic processes. GNSS stations extending from the South of India to the Higher Himalayan region have been used to quantify the strain build-up rate in Central India and the Himalayan region to assess the seismic hazard potential in this realm. Velocity solution has been determined after the application of Markov noise estimated from GPS time series data. The recorded GPS data are processed along with the closest International GNSS stations data for estimation of daily basis precise positioning. The baseline method has been used for the estimation of the linear strain rate between the two stations. Whereas the principal strain axes, maximum shear strain, rotation rate, and crustal shortening rate has been calculated through the site velocity using an independent approach; least-square inversion approach-based triangulation method. The strain rate analysis estimated by the triangulation approach exhibits a mean value of extension rate of 26.08 nano-strain/yr towards N131°, the compression rate of –25.38 nano-strain/yr towards N41°, maximum shear strain rate of 51.47 nano-strain/yr, dilation of –37.57 nano-strain/yr and rotation rate of 0.7°/Ma towards anti-clockwise. The computed strain rate from the Baseline method and the Triangulation method reports an extensive compression rate that gradually increases from the Indo-Gangetic Plain in South to Higher Himalaya in North. The slip deficit rate between India and Eurasia Plate in Kumaun Garhwal Himalaya has been computed as 18±1.5 mm/yr based on elastic dislocation theory. Thus, in this study, present-day surface deformation rate and interseismic strain accumulation rate in the Himalayan region and the Central Indian region have been estimated for seismic hazard analysis using continuous GPS measurements.


2010 ◽  
Vol 14 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Chalermchon Satirapod ◽  
Sarandhorn Bamrungwong ◽  
Christophe Vigny ◽  
Hung-Kyu Lee
Keyword(s):  

Author(s):  
S. M. L. Sastry

Ti3Al is an ordered intermetallic compound having the DO19-type superlattice structure. The compound exhibits very limited ductility in tension below 700°C because of a pronounced planarity of slip and the absence of a sufficient number of independent slip systems. Significant differences in slip behavior in the compound as a result of differences in strain rate and mode of deformation are reported here.Figure 1 is a comparison of dislocation substructures in polycrystalline Ti3Al specimens deformed in tension, creep, and fatigue. Slip activity on both the basal and prism planes is observed for each mode of deformation. The dominant slip vector in unidirectional deformation is the a-type (b) = <1120>) (Fig. la). The dislocations are straight, occur for the most part in a screw orientation, and are arranged in planar bands. In contrast, the dislocation distribution in specimens crept at 700°C (Fig. lb) is characterized by a much reduced planarity of slip, a tangled dislocation arrangement instead of planar bands, and an increased incidence of nonbasal slip vectors.


Author(s):  
F. Louchet ◽  
L.P. Kubin

Investigation of frictional forces -Experimental techniques and working conditions in the high voltage electron microscope have already been described (1). Care has been taken in order to minimize both surface and radiation effects under deformation conditions.Dislocation densities and velocities are measured on the records of the deformation. It can be noticed that mobile dislocation densities can be far below the total dislocation density in the operative system. The local strain-rate can be deduced from these measurements. The local flow stresses are deduced from the curvature radii of the dislocations when the local strain-rate reaches the values of ∿ 10-4 s-1.For a straight screw segment of length L moving by double-kink nucleation between two pinning points, the velocity is :where ΔG(τ) is the activation energy and lc the critical length for double-kink nucleation. The term L/lc takes into account the number of simultaneous attempts for double-kink nucleation on the dislocation line.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


Author(s):  
D. S. Pritchard

The effect of varying the strain rate loading conditions in compression on a copper single crystal dispersion-hardened with SiO2 particles has been examined. These particles appear as small spherical inclusions in the copper lattice and have a volume fraction of 0.6%. The structure of representative crystals was examined prior to any testing on a transmission electron microscope (TEM) to determine the nature of the dislocations initially present in the tested crystals. Only a few scattered edge and screw dislocations were viewed in those specimens.


Author(s):  
M. F. Stevens ◽  
P. S. Follansbee

The strain rate sensitivity of a variety of materials is known to increase rapidly at strain rates exceeding ∼103 sec-1. This transition has most often in the past been attributed to a transition from thermally activated guide to viscous drag control. An important condition for imposition of dislocation drag effects is that the applied stress, σ, must be on the order of or greater than the threshold stress, which is the flow stress at OK. From Fig. 1, it can be seen for OFE Cu that the ratio of the applied stress to threshold stress remains constant even at strain rates as high as 104 sec-1 suggesting that there is not a mechanism transition but that the intrinsic strength is increasing, since the threshold strength is a mechanical measure of intrinsic strength. These measurements were made at constant strain levels of 0.2, wnich is not a guarantee of constant microstructure. The increase in threshold stress at higher strain rates is a strong indication that the microstructural evolution is a function of strain rate and that the dependence becomes stronger at high strain rates.


Sign in / Sign up

Export Citation Format

Share Document