scholarly journals Application of Anticoincidence Technology to Burn-Up Measurement Systems in High-Temperature Gas-Cooled Reactors

2018 ◽  
Vol 10 (8) ◽  
pp. 2883
Author(s):  
Cui Mao ◽  
Yi-Bao Liu ◽  
Li-Guo Zhang

Nuclear energy is the focus of sustainable energy development worldwide. A high-temperature gas-cooled reactor (HTGR) plays a vital role in the development of nuclear energy. In a pebble-bed HTGR, the burn-up measurement system is important for ensuring reactor safety and economy. This study optimized a burn-up measurement system by adding anticoincidence technology with bismuth germanium oxide (BGO) crystals and a plastic scintillator used as anticoincidence detectors. Through Monte Carlo simulation, the detection effects of two different anticoincidence detectors on fuel elements were compared and analyzed. The study focused on varying the wall thickness and top thickness of these detectors to optimize the peak-to-Compton ratio (P/C). The results showed that the size of the BGO detector with the best anticoincidence effect (P/C of 727) consists in a diameter of 140 mm and a length of 210 mm. The best plastic scintillator size (P/C of 180) consists in a diameter of 260 mm and a length of 260 mm. Adding the anticoincidence technology lowered the Compton plateau of the measured gamma spectrum and significantly improved the detection performance of the burn-up measurement system. The new burn-up measurement system has improved detection precision not only for Cs-137 but also for low-activity nuclides.

Energy ◽  
2014 ◽  
Vol 68 ◽  
pp. 385-398 ◽  
Author(s):  
Min Yang ◽  
Qi Liu ◽  
Hongsheng Zhao ◽  
Ziqiang Li ◽  
Bing Liu ◽  
...  

2018 ◽  
Vol 328 ◽  
pp. 353-358 ◽  
Author(s):  
Bin Wu ◽  
Yue Li ◽  
Hong-sheng Zhao ◽  
Shuang Liu ◽  
Bing Liu ◽  
...  

1966 ◽  
Vol 9 (33) ◽  
pp. 166-174
Author(s):  
Yoshizo OKAMOTO ◽  
Shinichi NEGOYA

Author(s):  
Zhiwei Zhou

Sustainable development of Chinese economy in 21st century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China’s sustainable energy strategy. This paper illustrates the current status of China’s energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China’s energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400–450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China’s energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China’s future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people.


Author(s):  
Walter Jaeger ◽  
H. J. Hamel ◽  
Heinz Termuehlen

The gas-cooled reactor design with spherical fuel elements, referred to as high-temperature gas-cooled reactors (HTGR or HTR reactors) or pebble bed reactors has been already suggested by Farrington Daniels in the late 1940s; also referred to as Daniels’ pile reactor design. Under Rudolf Schulten the first pebble bed reactor, the 46MWth AVR Juelich reactor (Atom Versuchs-Reactor Jülich) was built in the late 1960s. It was in operation for 22 years and extensive testing confirmed its inherent safety.


Author(s):  
Wei Peng ◽  
Tian-qi Zhang ◽  
Ya-nan Zhen ◽  
Su-yuan Yu

The behavior of graphite dust is important to the safety analysis of High-Temperature Gas-cooled Reactor (HTGR). The fission products released by fuel elements would enter the primary loop and combine with dust, resulting in that the dust has a high load capacity of cesium, strontium, iodine and tritium. It would bring difficulty and inconvenience to the maintenance and repair of steam generator. Therefore, the behavior of graphite dust in the steam generator is essential to the safety of High Temperature Gas-cooled Reactors. The present study focused on the deposition and resuspension of graphite dust in steam generator of HTR by numerical method. The results show that the graphite dust in steam generator deposits on the surface of heat transfer tube through turbulent deposition, thermophoretic deposition, and other depositional mechanisms, of which thermophoretic deposition is the main mechanism for the particles with the diameter of 2.2μm in the present study. The preliminary calculation result shows that about 6760mg/m2 of graphite dust tends to load on the tube surface.


Sign in / Sign up

Export Citation Format

Share Document