Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

2011 ◽  
Vol 28 (5) ◽  
pp. 050203 ◽  
Author(s):  
Jian-Zhu Cao ◽  
Chao Fang ◽  
Li-Feng Sun
2018 ◽  
Vol 328 ◽  
pp. 353-358 ◽  
Author(s):  
Bin Wu ◽  
Yue Li ◽  
Hong-sheng Zhao ◽  
Shuang Liu ◽  
Bing Liu ◽  
...  

Author(s):  
Walter Jaeger ◽  
H. J. Hamel ◽  
Heinz Termuehlen

The gas-cooled reactor design with spherical fuel elements, referred to as high-temperature gas-cooled reactors (HTGR or HTR reactors) or pebble bed reactors has been already suggested by Farrington Daniels in the late 1940s; also referred to as Daniels’ pile reactor design. Under Rudolf Schulten the first pebble bed reactor, the 46MWth AVR Juelich reactor (Atom Versuchs-Reactor Jülich) was built in the late 1960s. It was in operation for 22 years and extensive testing confirmed its inherent safety.


Author(s):  
Xinli Yu ◽  
Suyuan Yu

This paper mainly deals with the simulations of graphite matrix of the spherical fuel elements by steam in normal operating conditions. The fuel element matrix graphite was firstly simplified to an annular part in the simulations. Then the corrosions to the matrix graphite in 10 MW High Temperature Gas-cooled Reactor (HTR-10) and the High Temperature Gas-cooled Reactor—–Pebble-bed Module (HTR-PM) were investigated respectively. The results showed that the gasification of fuel element matrix graphite was uniform and mainly occurred at the bottom of the core in both of the reactors in the mean residence time of the spherical fuel elements. This was mainly caused by the designed high temperature at the bottom. The total mass gasified in HTR-PM was much greater than the HTR-10, while it did not mean much severer corrosion occurred there. As it is known the core volume of HTR-PM is much larger than the HTR-10, which will result in much greater consumed graphite even for the same corrosion rate. The steam only lost about 1 to 3 percent after flowing through the cores in both reactors for different steam conditions. The corrosion of graphite became worse when the steam concentrations increased in helium coolant. The results also indicated that the corrosion rate of fuel element matrix graphite tended to increase slightly with the prolonging of the service time.


Author(s):  
N. G. van der Berg ◽  
J. B. Malherbe ◽  
A. J. Botha

There is currently renewed interest in high temperature nuclear fission power reactors. The Pebble Bed Modular Reactor (PBMR) is one of several high temperature gas-cooled reactors being investigated by researchers. The South African design of the PBMR is based on the original German design, with the fuel particles (called TRISO particles) being small multilayer spheres.


Author(s):  
Haitao Wang ◽  
Xin Wang

Spherical fuel elements with a diameter of 60mm are basic units of the nuclear fuel for the pebble-bed high temperature gas-cooled reactor (HTR). Each fuel element is treated as a graphite matrix containing around 10,000 randomly distributed fuel particles. The essential safety concept of the pebble-bed HTR is based on the objective that maximum temperature of the fuel particles does not exceed the design value. In this paper, a microstructure-based boundary element model is proposed for the large-scale thermal analysis of a spherical fuel element. This model presents detailed structural information of a large number of coated fuel particles dispersed in a spherical graphite matrix in order that temperature distributions at the level of fuel particles can be evaluated. The model is meshed with boundary elements in conjunction with the fast multipole method (FMM) in order that such large-scale computation is performed only in a personal desktop computer. Taking advantage of the fact that fuel particles are of the same shape, a similar sub-domain approach is used to establish the temperature translation mechanism between various layers of each fuel particle and to simplify the associated boundary element formulation. The numerical results demonstrate large-scale capacity of the proposed method for the multi-level temperature evaluation of the pebble-bed HTR fuel elements.


1987 ◽  
Vol 97 (1) ◽  
pp. 72-88 ◽  
Author(s):  
F. Schürrer ◽  
W. Ninaus ◽  
K. Oswald ◽  
R. Rabitsch ◽  
Hj. Müller ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 159-176 ◽  
Author(s):  
Shengyao Jiang ◽  
Jiyuan Tu ◽  
Xingtuan Yang ◽  
Nan Gui

2018 ◽  
Vol 33 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Xiang-wen Zhou ◽  
Yang Yang ◽  
Jing Song ◽  
Zhen-ming Lu ◽  
Jie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document