scholarly journals Fragility Assessments of Multi-Story Piping Systems within a Seismically Isolated Low-Rise Building

2018 ◽  
Vol 10 (10) ◽  
pp. 3775 ◽  
Author(s):  
Yonghee Ryu ◽  
Shinyoung Kwag ◽  
Bu‐Seog Ju

A successful, advanced safety design method for building and piping structures is related to its functionality and sustainability in beyond-design-basis events such as extremely strong ground motions. This study develops analytical models of seismically isolated building-piping systems in which multi-story piping systems are installed in non-isolated and base-isolated, low-rise buildings. To achieve the sustainable design of a multi-story piping system subjected to strong ground motions, Triple Friction Pendulum (TFP) elements, specifically TFP bearings, were incorporated into the latter building structure. Then, a seismic fragility analysis was performed in consideration of the uncertainty of the seismic ground motions, and the piping fragilities for the seismically non-isolated and the base-isolated building models were quantified. Here, the failure probability of the piping system in the non-isolated building was greater than that in the seismically isolated building. The seismic isolation design of the building improved the sustainability and functionality of the piping system by significantly reducing the seismic energy of extreme ground motions which was input to the building structure itself.

Author(s):  
Kosuke Iwamoto ◽  
Yuji Sato ◽  
Teruyoshi Otoyo ◽  
Munenori Horiuchi ◽  
Hidetoshi Sakai ◽  
...  

All of the traveling cranes at the port of Kobe were damaged by the strong ground motion of the Southern Hyogo Prefecture Earthquake in 1995. Seismic isolation systems for traveling cranes were developed to increase earthquake resistance against strong ground motions. In general, the isolation systems for traveling cranes for strong ground motions are very large. Quays which are not reinforced have a risk of being damaged by strong ground motions, and require traveling cranes to prevent derailing during middle strong motions, because derailing leads to collapse of the traveling cranes. A mechanism for preventing derailing of material handling equipment was developed for middle strong ground motions. A middle rocker beam of the new mechanism is divided into two beams, and uplift motion of a leg of a crane can be absorbed by rotating motions of the two beams. This allows the mechanism for preventing derailing to be easily installed into the established equipment. Seismic analyses using an finite element model of the traveling crane and vibration tests were conducted to verify the validity of the design and derailing prevention performance. The results of analyses and vibration tests showed that the mechanism for preventing derailing can prevent wheels from derailing during middle strong earthquakes. The configuration of the mechanism and the results of the analyses and vibration tests are presented in this paper.


2021 ◽  
Vol 11 (15) ◽  
pp. 7041
Author(s):  
Baoyintu Baoyintu ◽  
Naren Mandula ◽  
Hiroshi Kawase

We used the Green’s function summation method together with the randomly perturbed asperity sources to sum up broadband statistical Green’s functions of a moderate-size source and predict strong ground motions due to the expected M8.1 to 8.7 Nankai-Trough earthquakes along the southern coast of western Japan. We successfully simulated seismic intensity distributions similar to the past earthquakes and strong ground motions similar to the empirical attenuation relations of peak ground acceleration and velocity. Using these results, we predicted building damage by non-linear response analyses and find that at the regions close to the source, as well as regions with relatively thick, soft sediments such as the shoreline and alluvium valleys along the rivers, there is a possibility of severe damage regardless of the types of buildings. Moreover, the predicted damage ratios for buildings built before 1981 are much higher than those built after because of the significant code modifications in 1981. We also find that the damage ratio is highest for steel buildings, followed by wooden houses, and then reinforced concrete buildings.


2014 ◽  
Vol 18 (5) ◽  
pp. 1403-1410 ◽  
Author(s):  
Abdollah Bagheri ◽  
Gholamreza Ghodrati Amiri ◽  
Jamshid Haghdoust

2010 ◽  
Vol 30 (10) ◽  
pp. 1010-1025 ◽  
Author(s):  
George D. Hatzigeorgiou ◽  
Asterios A. Liolios

Author(s):  
Sourabh Vern ◽  
M. K. Shrimali ◽  
S. D. Bharti ◽  
T. K. Datta ◽  
Ehsan Noroozinejad Farsangi

Sign in / Sign up

Export Citation Format

Share Document