scholarly journals Genetic Algorithm for Optimizing Routing Design and Fleet Allocation of Freeway Service Overlapping Patrol

2018 ◽  
Vol 10 (11) ◽  
pp. 4120 ◽  
Author(s):  
Xiuqiao Sun ◽  
Jian Wang ◽  
Weitiao Wu ◽  
Wenjia Liu

The freeway service patrol problem involves patrol routing design and fleet allocation on freeways that would help transportation agency decision-makers when developing a freeway service patrols program and/or altering existing route coverage and fleet allocation. Based on the actual patrol process, our model presents an overlapping patrol model and addresses patrol routing design and fleet allocation in a single integrated model. The objective is to minimize the overall average incident response time. Two strategies—overlapping patrol and non-overlapping patrol—are compared in our paper. Matrix encoding is applied in the genetic algorithm (GA), and to maintain population diversity and avoid premature convergence, a niche strategy is incorporated into the traditional genetic algorithm. Meanwhile, an elitist strategy is employed to speed up the convergence. Using numerical experiments conducted based on data from the Sioux Falls network, we clearly show that: overlapping patrol strategy is superior to non-overlapping patrol strategy; the GA outperforms the simulated annealing (SA) algorithm; and the computational efficiency can be improved when LINGO software is used to solve the problem of fleet allocation.

2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


Author(s):  
Ning Yang ◽  
Shiaaulir Wang ◽  
Paul Schonfeld

A Parallel Genetic Algorithm (PGA) is used for a simulation-based optimization of waterway project schedules. This PGA is designed to distribute a Genetic Algorithm application over multiple processors in order to speed up the solution search procedure for a very large combinational problem. The proposed PGA is based on a global parallel model, which is also called a master-slave model. A Message-Passing Interface (MPI) is used in developing the parallel computing program. A case study is presented, whose results show how the adaption of a simulation-based optimization algorithm to parallel computing can greatly reduce computation time. Additional techniques which are found to further improve the PGA performance include: (1) choosing an appropriate task distribution method, (2) distributing simulation replications instead of different solutions, (3) avoiding the simulation of duplicate solutions, (4) avoiding running multiple simulations simultaneously in shared-memory processors, and (5) avoiding using multiple processors which belong to different clusters (physical sub-networks).


2020 ◽  
Vol 10 (15) ◽  
pp. 5110
Author(s):  
Chao Jiang ◽  
Pruthvi Serrao ◽  
Mingjie Liu ◽  
Chongdu Cho

Estimating the parameters of sinusoidal signals is a fundamental problem in signal processing and in time-series analysis. Although various genetic algorithms and their hybrids have been introduced to the field, the problems pertaining to complex implementation, premature convergence, and accuracy are still unsolved. To overcome these drawbacks, an enhanced genetic algorithm (EGA) based on biological evolutionary and mathematical ecological theory is originally proposed in this study; wherein a prejudice-free selection mechanism, a two-step crossover (TSC), and an adaptive mutation strategy are designed to preserve population diversity and to maintain a synergy between convergence and search ability. In order to validate the performance, benchmark function-based studies are conducted, and the results are compared with that of the standard genetic algorithm (SGA), the particle swarm optimization (PSO), the cuckoo search (CS), and the cloud model-based genetic algorithm (CMGA). The results reveal that the proposed method outperforms the others in terms of accuracy, convergence speed, and robustness against noise. Finally, parameter estimations of real-life sinusoidal signals are performed, validating the superiority and effectiveness of the proposed method.


Author(s):  
Al-khafaji Amen

<span lang="EN-US">Maintaining population diversity is the most notable challenge in solving dynamic optimization problems (DOPs). Therefore, the objective of an efficient dynamic optimization algorithm is to track the optimum in these uncertain environments, and to locate the best solution. In this work, we propose a framework that is based on multi operators embedded in genetic algorithms (GA) and these operators are heuristic and arithmetic crossovers operators. The rationale behind this is to address the convergence problem and to maintain the diversity. The performance of the proposed framework is tested on the well-known dynamic optimization functions i.e., OneMax, Plateau, Royal Road and Deceptive. Empirical results show the superiority of the proposed algorithm when compared to state-of-the-art algorithms from the literature.</span>


Sign in / Sign up

Export Citation Format

Share Document