scholarly journals The Design and Analysis of Internally Stiffened GFRP Tubular Decks—A Sustainable Solution

2018 ◽  
Vol 10 (12) ◽  
pp. 4538 ◽  
Author(s):  
Yeou-Fong Li ◽  
Habib Meda ◽  
Walter Chen

The aim of this paper was to find an optimal stiffener configuration of thin-wall tubular panels made by glass fiber reinforced polymer (GFRP) composite material, which is a low carbon emission, low life cycle cost, and sustainable material. Finite-element analysis (FEA) was used to investigate the flexural and torsional stiffness of various internally stiffened sections of thin-wall GFRP decks. These decks consist of internally stiffened tubular profiles laid side by side and bonded together with epoxy to ensure the panel acts as an assembly. Three-dimensional models of the seven proposed decks were assembled with tubular profiles of different stiffener patterns. First, the non-stiffened tube profile was tested experimentally to validate the parameters used in the subsequent numerical analysis. Then, the finite element software, ANSYS, was used to simulate the flexural and torsional behavior of the decks with different stiffener patterns under bending and torsional loads. The decks with stiffener patterns such as “O” type, “V” type, and “D” type were found to be the most effective in bending. For torsion, there was a distinct tendency for deck panels with closed shaped stiffener patterns to perform better than their counterparts. Overall, the “O” type deck panel was an optimal stiffener configuration.

1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2012 ◽  
Vol 605-607 ◽  
pp. 1372-1376
Author(s):  
Qiu Dong He ◽  
Wen Qi Yu ◽  
Shu Fen Xiao

To improve the impeller safety and reliability of extractable explosion-proof contra-rotating axial fan for mine local ventilation, Extractable Fan FBDC№9.0/2×30 was taken as the research object, and an approximate three-dimensional finite element computation model was built by using ANSYS software. The stress and displacement were calculated, too. By testing, the fan works stably. The air quantity is 655-978 m3/min, total pressure, 3443-412Pa, static pressure, 3314-118Pa. And the highest static pressure efficiency is up to 70.35%, A-weight Specific Sound Level is 17.5dB. Furthermore, the intension and stiffness of the impeller meet requirements. Sample test and field using show that the computation and the model of this impeller are right. Through reasonable design, the impeller of contra-rotating axial fan with equally-thick circular arc blade profile and ordinary hot-rolling low-carbon steel blades has the intension and the stiffness which meets demands, and the air performance reaches higher level.


2013 ◽  
Vol 644 ◽  
pp. 358-361
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Huizeli reinforced concrete rectangular-sectioned aqueduct. Considering four combination cases in aqueduct’s construction and operating process, researching variation laws of the aqueduct’s stress and displacement. Analysis results show that design scheme of Huizeli reinforced concrete rectangular-sectioned aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete rectangular-sectioned aqueduct.


2011 ◽  
Vol 368-373 ◽  
pp. 3052-3056
Author(s):  
Wei Jun Yang ◽  
Yong Da Yang

New full hall scaffolds with pulley-clip style formwork support system is adopted in the concert hall of Changsha. This paper presents the concept of the complete equivalent initial imperfection according to the characteristics of too many influential factors on the high formwork supporting frame,then makes the complete equivalent initial imperfectione equivalent to assumed equivalent horizontal load in order to ensure the safety of the frame. At the same time, it gets a three-dimensional model by the general finite element software ANSYS 10.0. Based on the results of experiment and finite element analysis, it gets the recommended value of assumed equivalent horizontal load. The study on the high formwork supporting frame with pulley-clip style provides some reference for other similar projects.


Author(s):  
Liping Wan ◽  
Wangping Dong

Abstract Ratcheting assessment by elastic-plastic stress analysis is presented in ASME VIII-2, paragraph 5.5.7. There are three criteria. The first one is strict in engineering design. It’s hard for most of structures to satisfy it. If the plastic strain in the structure is zero, it means that the material is not fully utilized and maybe the structure is unreasonable. Therefore, the second and third criteria are used much more. The first one and the third one can be observed directly and judged accurately by the finite element analysis results. The second one demands an elastic core in the primary-load-bearing boundary. It could be easily observed when the structure is axisymmetric, but hard to judge in the 3D structure. Okamoto in Committee on Three Dimensional Finite Element Stress Evaluation (C-TDF) has studied two thermal stress ratchet criteria: evaluating variations in the plastic strain increments and evaluating variations in the elastic core region, which can accurately assess ratcheting. Recent years, based on the criteria above, more researches have been performed by engineers not only from C-TDF but from all over the world. In this work, several two-dimensional structures and three-dimensional structures under particular load and displacement boundaries are performed by using finite element software ANSYS, aiming to compare the similarities and differences between the criteria in ASME VIII-2, 5.5.7.2 and those given by C-TDF. The assessment of these structures presented in this work will help engineers understand the realization of the criteria and methods in engineering design, especially how to utilize the results from ANSYS.


2014 ◽  
Vol 602-605 ◽  
pp. 709-712
Author(s):  
Jin Hong Ma ◽  
Bin Tao ◽  
Xiao Han Yao

Y-Type rolling mill with three roller is a new kind of wire mill.The three-dimensional models of rolling are established by Pro/E. Based on the finite element analysis software ANSYS/LS-DYNA, the rolling process of wire by Y-type rollers is simulated. The rolling piece movement is analysed. Stress and strain of Y-type roller are also analysed.


2013 ◽  
Vol 397-400 ◽  
pp. 568-572
Author(s):  
Hong Feng Yan ◽  
Wei Ping Wang ◽  
Xiang Yang Qi ◽  
Hui Xian Zhang ◽  
Tian Tian ◽  
...  

The paper is to study the working device of rough terrain forklift, carried out forces analysis on a typical three section telescopic boom, results indicated that the boom working in the lowest position is the most dangerous situation, Adopted the CAD software of SolidWorks to build the three dimensional models of telescopic boom, then used the FEA component of SolidWorks Simulation to carried out finite element analysis(FEA) for the working device, obtained FEA results. By the use of comparing the stress testing results with the finite element analysis results, certificated that the finite element analysis models are reasonable and the finite element method by Simulation is feasible and reliable. All of these works have very important reference value for designing and optimization of the telehandler in the future.


Sign in / Sign up

Export Citation Format

Share Document