scholarly journals Fault Ride through Capability Augmentation of a DFIG-Based Wind Integrated VSC-HVDC System with Non-Superconducting Fault Current Limiter

2019 ◽  
Vol 11 (5) ◽  
pp. 1232 ◽  
Author(s):  
Md Alam ◽  
Mohammad Abido ◽  
Alaa Hussein ◽  
Ibrahim El-Amin

This paper proposes a non-superconducting bridge-type fault current limiter (BFCL) as a potential solution to the fault problems of doubly fed induction generator (DFIG) integrated voltage source converter high-voltage DC (VSC-HVDC) transmission systems. As the VSC-HVDC and DFIG systems are vulnerable to AC/DC faults, a BFCL controller is developed to insert sizeable impedance during the inception of system disturbances. In the proposed control scheme, constant capacitor voltage is maintained by the stator VSC (SVSC) controller, while current extraction or injection is achieved by rotor VSC (RVSC) controller. Current control mode-based active and reactive power controllers for an HVDC system are developed. Balanced and different unbalanced faults are applied in the system to show the effectiveness of the proposed BFCL solution. A DFIG wind-based VSC-HVDC system, BFCL, and their controllers are implemented in a real time digital simulator (RTDS). The performance of the proposed BFCL control strategy in DFIG-based VSC-HVDC system is compared with a series dynamic braking resistor (SDBR). Comparative RTDS implementation results show that the proposed BFCL control strategy is very efficient in improving system fault ride through (FRT) capability and outperforms SDBR in all cases considered.

2013 ◽  
Vol 705 ◽  
pp. 378-385 ◽  
Author(s):  
Hua Li ◽  
Dong Ming Han ◽  
Ling Quan Zeng

The installation of Fault Current Limiter (FCL) brings many advantages to power systems. Therefore, in recent years, many kinds of FCL have been developed. This paper describes a new type of FCL, it’s composed by a tandem resistance and a self rectified voltage source inverter, connected to the distribution line by a coupling transformer. It realizes the limiting by controlling the reactive power. Its prominent features are: simple configuration, lower voltage level. This paper aims to evaluate the operating characteristics of such FCL in both simulation and experimental research ways.


Author(s):  
Sang-Jae Choi ◽  
Sung-Hun Lim

Building a new power plant to address the growing demand for power due to population concentration in the metropolitan area is one of the world's major concerns. However, since a large power plant can not be located around the city due to burden of economic cost, building power plant outside metropolitan and cities is necessary. Therefore, new power generation facilities are promoting policies to provide distributed generator(DG) with a small capacity relatively near the metropolitan. When the DG (photovoltaic, wind farm, etc.) is connected with the grid using medium voltage direct current (MVDC) system, voltage sourced converter(VSC) should supply reactive power to the grid, because of fault ride through(FRT) operation in grid fault. If the voltage drop is severe, the converter should be disconnected from the grid immediately without supplying the reactive power, resulting in a considerable economic loss. In general, superconducting fault current limiter(SFCL) is introduced as a measure to enhance FRT capability. In this paper, we use trigger type SFCL which protects superconducting element and reduces low voltage. On the other hand, the active power unbalance of the DC-link and the DC voltage rise due to the reactive power supply of the grid-side converter. The rise of the DC voltage causes the P (active power), Q (reactive power) control of the converter to deviate, causing malfunction and damage of the DC equipment. Therefore, the rise of the DC voltage must be prevented. In this paper, we consider the suppression the DC voltage rising caused by the FRT operation through the active power tracking control (APTC).


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Guo-Jie Li ◽  
Si-Ye Ruan ◽  
Tek Lie

AbstractA multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on “dc voltage droop” power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.


2017 ◽  
Vol 11 (2) ◽  
pp. 313-324 ◽  
Author(s):  
Amin Jalilian ◽  
Seyed Behzad Naderi ◽  
Michael Negnevitsky ◽  
Mehrdad Tarafdar Hagh ◽  
Kashem M. Muttaqi

Sign in / Sign up

Export Citation Format

Share Document