scholarly journals Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage

2020 ◽  
Vol 12 (12) ◽  
pp. 5158 ◽  
Author(s):  
Morteza Nazari-Heris ◽  
Behnam Mohammadi-Ivatloo ◽  
Somayeh Asadi

The coordination of energy carriers in energy systems has significant benefits in enhancing the flexibility, efficiency, and sustainability characteristics of energy networks. These benefits are of great importance for multi-carrier energy networks due to the complexity of obtaining optimal dispatch, considering the non-convex nature of their energy conversion. The current study proposes a robust operation model for the coordination of multi-carrier systems, including electricity, gas, heat, and water carriers concerning thermal energy storage technology. Thermal energy storage is for storing extra heat generated by combined heat and power (CHP) plants and boilers in time intervals with low heat demand on the system and discharging it when required. Energy network operators should have the capability to manage uncertain energy loads to study the impact of load variation on the decision-making process in network operation. Accordingly, this study employs an information gap decision theory (IGDT) method to model the uncertainty of the power demand in optimal system operation. By applying the IGDT approach, the operator of the energy system can use the appropriate methodology to obtain a robust optimal operation. Such a modeling approach helps the operator to make suitable decisions about probable variations in power load. The introduced model is applied in a test system for evaluating the performance and effectiveness of the introduced scheme.

Author(s):  
Louis A. Tse ◽  
Richard E. Wirz ◽  
Adrienne S. Lavine

This paper examines the economic benefits of various operation strategies for a thermal energy storage (TES) system in a solar thermal power plant. A thermodynamic model developed to evaluate different design options has been utilized to calculate system performance and assess the impact of operation strategies, storage capacity, and market prices on the value of TES. The overall performance is also investigated through several parametric studies, such as solar multiple, geographic location, and choice of HTF. The influence of these parameters has been evaluated in consideration of exergy destruction due to heat transfer and pressure drop. By incorporating exergy-based optimization alongside traditional energy analyses, the results of this study evaluate the optimal values for key parameters in the design and operation of TES systems, as well as highlight opportunities to minimize thermodynamic losses. Annual performance for each case is characterized both by nominal and part-load efficiency. Levelized cost of electricity (LCOE) is calculated for all cases, illustrating a set of optimal parameters that yield a minimum LCOE value.


2019 ◽  
Vol 111 ◽  
pp. 06002
Author(s):  
Christoph Schellenberg ◽  
Laurentiu Dimache ◽  
John Lohan

Grid-edge technologies (GET) enable and amplify the impact of three emerging energy system trends: electrification, decentralisation, and digitalisation. Smart grid integrated heat pumps with thermal energy storage enable both the electrification of heating and decentralised demand response. Such power-to-heat technologies simultaneously decarbonise heating and facilitate the grid integration of more variable renewable electricity in a cost-effective manner. This may help to explore and exploit untapped wind generation potential. This study explores the flexibility potential of a domestic scale heat pump with thermal energy storage in a typical Irish home in December. The system is simulated to investigate demand-side flexibility and sensitivity to both heat pump and thermal storage capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time electricity prices and optimising for operational cost, the implicit demand flexibility potential is quantified with different combinations of heat pump power and storage capacity. The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost periods. Optimised system design depends on local climate, heat demand profile, optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm yielded near-global optimal results approximately 40 times faster than with exhaustive enumeration.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2944
Author(s):  
Luca Baldini ◽  
Benjamin Fumey

The article estimates energy flexibility provided to the electricity grid by integration of long-term thermal energy storage in buildings. To this end, a liquid sorption storage combined with a compression heat pump is studied for a single-family home. This combination acts as a double-stage heat pump comprised of a thermal and an electrical stage. It lowers the temperature lift to be overcome by the electrical heat pump and thus increases its coefficient of performance. A simplified model is used to quantify seasonal energy flexibility by means of electric load shifting evaluated with a monthly resolution. Results are presented for unlimited and limited storage capacity leading to a total seasonal electric load shift of 631.8 kWh/a and 181.7 kWh/a, respectively. This shift, referred to as virtual battery effect, provided through long-term thermal energy storage is large compared to typical electric battery capacities installed in buildings. This highlights the significance of building-integrated long-term thermal energy storage for provision of energy flexibility to the electricity grid and hence for the integration of renewables in our energy system.


2015 ◽  
Vol 52 (6) ◽  
pp. 22-37 ◽  
Author(s):  
P. Ivanova ◽  
O. Linkevics ◽  
A. Cers

Abstract The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP–2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen – the increase of cogeneration unit efficiency during the summer.


2014 ◽  
Vol 695 ◽  
pp. 553-557
Author(s):  
N.A.M. Amin ◽  
Mohd Azizi Said ◽  
Azizul Mohamad ◽  
Mohd Shukry Abdul Majid ◽  
Mohd Afendi ◽  
...  

Mathematical representations of the encapsulated phase change material (PCM) within thermal energy storage (TES) models are investigated. Applying the Effectiveness - Number of Transfer Unit (ɛ-NTU) method, the performances of these TES are presented in terms of the effectiveness considering the impact of different variable parameters. The mathematical formulations summarized can be used for future research work with the suggestion to maximize the heat transfer within the storage. Thus the optimisation on the configuration of the encapsulation can be done through a parametric analysis.


Sign in / Sign up

Export Citation Format

Share Document