scholarly journals An Efficient Hybrid Approach for Scheduling the Train Timetable for the Longer Distance High-Speed Railway

2021 ◽  
Vol 13 (5) ◽  
pp. 2538
Author(s):  
Zeyu Wang ◽  
Leishan Zhou ◽  
Bin Guo ◽  
Xing Chen ◽  
Hanxiao Zhou

Compared with other modes of transportation, a high-speed railway has energy saving advantages; it is environmentally friendly, safe, and convenient for large capacity transportation between cities. With the expansion of the high-speed railway network, the operation of high-speed railways needs to be improved urgently. In this paper, a hybrid approach for quickly solving the timetable of high-speed railways, inspired by the periodic model and the aperiodic model, is proposed. A space–time decomposition method is proposed to convert the complex passenger travel demands into service plans and decompose the original problem into several sub-problems, to reduce the solving complexity. An integer programming model is proposed for the sub-problems, and then solved in parallel with CPLEX. After that, a local search algorithm is designed to combine the timetables of different periods, considering the safety operation constraints. The hybrid approach is tested on a real-world case study, based on the Beijing–Shanghai high-speed railway (HSR), and the results show that the train timetable calculated by the approach is superior to the real-world timetable in many indexes. The hybrid approach combines the advantages of the periodic model and the aperiodic model; it can deal with the travel demands of passengers well and the solving speed is fast. It provides the possibility for flexible adjustment of a timetable and timely response to the change of passenger travel demands, to avoid the waste of transportation resources and achieve sustainable development.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qin Zhang ◽  
Xiaoning Zhu ◽  
Li Wang ◽  
Shuai Wang

The optimization problems of train timetabling and platforming are two crucial problems in high-speed railway operation; these problems are typically considered sequentially and independently. With the construction of high-speed railways, an increasing number of interactions between trains on multiple lines have led to resource assignment difficulties at hub stations. To coordinate station resources for multiline train timetables, this study fully considered the resources of track segments, station throat areas, and platforms to design a three-part space-time (TPST) framework from a mesoscopic perspective to generate a train timetable and station track assignment simultaneously. A 0-1 integer programming model is proposed, whose objective is to minimize the total weighted train running costs. The construction of a set of incompatible vertexes and links facilitates the expression of difficult constraints. Finally, example results verify the validity and practicability of our proposed method, which can generate conflict-free train timetables with a station track allocation plan for multiple railway lines at the same time.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhiqiang Tian ◽  
Guofeng Sun ◽  
Dingjun Chen ◽  
Zhicheng Qiu ◽  
Yawen Ma

Travel route options for passengers can provide data support for railway line planning, passenger flow organisation, and train operation establishment. A critical review of the literature indicates that previous studies mainly focused on choices offered by a single railway network path without much consideration of China’s normal-speed and high-speed integrated railway network and the effect of train timetable on passengers’ travel choice. In this study, a method based on generalised cost is proposed to discover the valid routes of passenger travel in the integrated network of China’s normal-speed and high-speed railways. After quantifying the effects of train fare, travel time, transfer, travel convenience, comfort, and other factors on the generalised expenses of passengers, this study presents a generalised cost determination method when individuals select an option from different seats of different trains of specific railway transport products. Theoretically, the valid routes considering the train schedule is defined, and a valid route search algorithm is designed using the deep traversal idea in a new valid route searching network. Considering the Lanzhou-Beijing passenger travel routes as an example, this study verifies the practicability of the generalised cost calculation method, as well as that of the valid routes search method.


2018 ◽  
Vol 30 (6) ◽  
pp. 671-682 ◽  
Author(s):  
Ying Wang ◽  
Bao-Ming Han ◽  
Jia-Kang Wang

Reasonable selection of passenger flow routes consideringdifferent transportation organization modes can meetthe demands of adapting to large-scale high-speed railwaynetworks and improving network efficiency. Passenger flowrouting models are developed to find and optimize a setof passenger flow routes for a high-speed railway network considering different transportation organization modes. In this paper, we presented a new approach minimizing the operating costs, including traveling cost, cost of travel time differences between different lines, and penalties for the inter-line. The network was reconstructed to solve the directed graph with four nodes (node-in-up, node-in-down, nodes-outup, and nodes-out-down) indicating one station. To tackle our problem, we presented an integer non-linear programming model, and direct passenger demand was guaranteed owing to volume constraints. Binary variables were introduced to simplify the model, and the algorithm process was optimized. We suggested a global optimal algorithm by Lingo 11.0. Finally, the model was applied to a sub-network of the Northeast China railway system. Passenger flow routes were optimized and the transportation organization mode was discussed based on passenger volume, traveling distance, and infrastructure.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhipeng Huang ◽  
Huimin Niu ◽  
Ruhu Gao ◽  
Haoyu Fan ◽  
Chenglin Liu

Passengers would like to choose the most suitable train based on their travel preferences, expenses, and train timetable in the high-speed railway corridor. Meanwhile, the railway department will constantly adjust the train timetable according to the distribution of passenger flows during a day to achieve the optimal operation cost and energy consumption saving plan. The question is how to meet the differential travel needs of passengers and achieve sustainable goals of service providers. Therefore, it is necessary to design a demand-oriented and environment-friendly high-speed railway timetable. This paper formulates the optimization of train timetable for a given high-speed railway corridor, which is based on the interests of both passengers and transportation department. In particular, a traveling time-space network with virtual departure arc is constructed to analyze generalized travel costs of passengers of each origin-destination (OD), and bilevel programming model is used to optimize the problem. The upper integer programming model regards the minimization of the operating cost, which is simplified to the minimum traveling time of total trains, as the goal. The lower level is a user equilibrium model which arranges each OD passenger flow to different trains. A general advanced metaheuristic algorithm embedded with the Frank–Wolfe method is designed to implement the bilevel programming model. Finally, a real-world numerical experiment is conducted to verify the effectiveness of both the model and the algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Ke ◽  
Lei Nie ◽  
Christian Liebchen ◽  
Wuyang Yuan ◽  
Xin Wu

Air and high-speed rail (AH) integration services are gaining ground with the development of the high-speed railway and airline industries. A well-designed feeder train timetable with good synchronization is of great significance in an AH integration service, because it can improve the connectivity at transfer nodes and offer more opportunities for intermodal passengers to travel. In this study, we propose a multi-objective model of a feeder railway timetable problem in an AH integration service to improve synchronization. The aims of the optimization model are to maximize the number of synchronizations and the coverage of synchronized flights, as well as to minimize the transfer penalties of passengers. We focus on a scenario of a partial subnetwork in which one direction of a two-direction railroad line with one transfer station is considered. The model is applied to Shijiazhuang Zhengding International Airport, China. The results illustrate the effectiveness of the approach developed in the paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Di Liu ◽  
Javier Durán Micco ◽  
Gongyuan Lu ◽  
Qiyuan Peng ◽  
Jia Ning ◽  
...  

In this paper, a matheuristic iterative approach (MHIA) is proposed to solve the line planning problem, also called network design problem, and frequency setting on the Chinese high-speed railway network. Our optimization model integrates the cost-oriented and passenger-oriented objectives into a profit-oriented objective. Therefore, the passenger travel time is incorporated in the ticket price using a travel time value. As a result, transfers and detours will result in lower ticket prices and thus lower revenues for the operator. When evaluating the performance of a given line plan, the way in which passengers will travel through the network needs to be modelled. This passenger assignment is typically a time-consuming calculation. The proposed line planning approach iteratively improves the line plan using easy-to-determine indicators. During the process, a mixed integer linear programming model addresses the passenger assignment and optimizes the frequency setting in order to maximise the operational profit. Extensive computational experiments are executed to show the effectiveness of the proposed approach to deal with the real-world railway network line planning problem. Through extensive computational experiments on the small example network and real-world-based instances, the results show that the proposed model can improve the profits by 22.4% on average comparing to their initial solutions. When comparing to an alternative iterative approach, our proposed method has advantage of obtaining high quality of solutions by improving the profit 10.8% on average. For small, medium, and large size networks, the obtained results are close to the optimal solutions, when available.


2013 ◽  
Vol 30 (04) ◽  
pp. 1350006 ◽  
Author(s):  
BUM HWAN PARK ◽  
YONG-IL SEO ◽  
SUNG-PIL HONG ◽  
HAG-LAE RHO

This study investigated railway line planning optimization models that determine the frequency of trains on each line to satisfy passenger origin–destination demands while minimizing related costs. Most line planning models assume that all trains on the same route run with the same halting pattern. However, to minimize passenger travel time and to provide a train service with faster travel times to as many stations as possible, we must consider various halting patterns; these patterns can be provided in advance or are required to be formulated. Our study addresses two line planning problems that consider halting patterns, describes the computational complexities of each problem, and presents the column generation approach for one model. We also present experimental results obtained for the Korean high-speed railway network.


Sign in / Sign up

Export Citation Format

Share Document