scholarly journals State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter

2021 ◽  
Vol 13 (9) ◽  
pp. 5046
Author(s):  
Jie Xing ◽  
Peng Wu

State of charge (SOC) of the lithium-ion battery is an important parameter of the battery management system (BMS), which plays an important role in the safe operation of electric vehicles. When existing unknown or inaccurate noise statistics of the system, the traditional unscented Kalman filter (UKF) may fail to estimate SOC due to the non-positive error covariance of the state vector, and the SOC estimation accuracy is not high. Therefore, an improved adaptive unscented Kalman filter (IAUKF) algorithm is proposed to solve this problem. The IAUKF is composed of the improved unscented Kalman filter (IUKF) that is able to suppress the non-positive definiteness of error covariance and Sage–Husa adaptive filter. The IAUKF can improve the SOC estimation stability and can improve the SOC estimation accuracy by estimating and correcting the system noise statistics adaptively. The IAUKF is verified under the federal urban driving schedule test, and the SOC estimation results are compared with IUKF and UKF. The experimental results show that the IAUKF has higher estimation accuracy and stability, which verifies the effectiveness of the proposed method.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Luping Chen ◽  
Liangjun Xu ◽  
Ruoyu Wang

The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jianping Gao ◽  
Hongwen He

Accurate state of charge (SoC) estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF), have been implemented with a Li4Ti5O12lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.


2019 ◽  
Vol 9 (9) ◽  
pp. 1726 ◽  
Author(s):  
Jing Hou ◽  
Yan Yang ◽  
He He ◽  
Tian Gao

An accurate state of charge (SOC) estimation is vital for the safe operation and efficient management of lithium-ion batteries. At present, the extended Kalman filter (EKF) can accurately estimate the SOC under the condition of a precise battery model and deterministic noise statistics. However, in practical applications, the battery characteristics change with different operating conditions and the measurement noise statistics may vary with time, resulting in nonoptimal and even unreliable estimation of SOC by EKF. To improve the SOC estimation accuracy under uncertain measurement noise statistics, a variational Bayesian approximation-based adaptive dual extended Kalman filter (VB-ADEKF) is proposed in this paper. The variational Bayesian inference is integrated with the dual EKF (DEKF) to jointly estimate the lithium-ion battery parameters and SOC. Meanwhile, the measurement noise variances are simultaneously estimated in the SOC estimation process to compensate for the model uncertainties, so that the adaptability of the proposed algorithm to dynamic changes in battery characteristics is greatly improved. A constant current discharge test, a pulse current discharge test, and an urban dynamometer driving schedule (UDDS) test are performed to verify the effectiveness and superiority of the proposed algorithm by comparison with the DEKF algorithm. The experimental results show that the proposed VB-ADEKF algorithm outperforms the traditional DEKF algorithm in terms of SOC estimation accuracy, convergence rate, and robustness.


Author(s):  
Wu Xiaogang ◽  
Xuefeng Li ◽  
Nikolay I. Shurov ◽  
Alexander A. Shtang ◽  
Michael V. Yaroslavtsev ◽  
...  

As the core component of electric vehicle, lithium-ion battery needs to adopt effective battery management method to prolong battery life and improve the reliability and safety. The accurate estimation of the battery SOC can be used to prevent the battery over charge and over discharge, reduce damage to the battery and improve battery performance, which plays a vital role in the battery management system. The study of battery SOC estimation mainly focused on the battery model construction and SOC estimation algorithm. Aiming at the problem that the state of charge (SOC) of electric vehicle is difficult to be accurately estimated under complex operating conditions, based on the parameter identification of the equivalent circuit of a ternary polymer lithium-ion battery, an Extended Kalman Filter (EKF) algorithm was used to estimate the SOC of the ternary polymer lithium-ion battery. Simulation and experimental results show that the estimation of SOC can be carried out by using the EKF algorithm under the conditions of China Passenger Car Condition (Chinacar) and new European driving cycle (NEDC) Compared with the coulomb counting method, the average error of SOC estimation can be realized is 1.042% and 1.138% respectively, the maximum error within 4%. Application of this algorithm to achieve SOC estimation has good robustness and convergence


Author(s):  
Shuai Xu ◽  
Fei Zhou ◽  
Yucheng Liu

Abstract Among the battery state of charge estimation methods, the Kalman-based filter algorithms are sensitive to the battery model while the neural network-based algorithms are decided by hyperparameters. In this paper, a hybrid approach composed of a gated recurrent unit neural network and an adaptive unscented Kalman filter method is proposed. A gated recurrent unit neural network is first used to acquire the nonlinear relationship between the battery state of charge and battery measurement signals, and then an adaptive unscented Kalman filter is utilized to filter out the output noise of the neural network to further improve estimation accuracy. The hybrid method avoids the establishment of accurate battery models and the search for optimal hyperparameters. The data of dynamical street test and US06 test are used as training dataset and validation dataset, respectively, while the data collected from the tests under federal urban driving schedules and Beijing driving cycle conditions are taken as testing dataset. As compared with some hybrid methods proposed in other literature, the hybrid method has the best estimation accuracy and generalization for various driving cycles at different ambient temperatures. The root mean square error and the mean absolute error all are less than 1.5%, and the maximum absolute error are less than 2%. In addition, it also exhibits powerful robustness against the abnormal values of the battery signals and can converge to the true value in just 5 seconds.


Sign in / Sign up

Export Citation Format

Share Document