A hybrid method for lithium-ion batteries state-of-charge estimation based on gated recurrent unit neural network and an adaptive unscented Kalman filter

Author(s):  
Shuai Xu ◽  
Fei Zhou ◽  
Yucheng Liu

Abstract Among the battery state of charge estimation methods, the Kalman-based filter algorithms are sensitive to the battery model while the neural network-based algorithms are decided by hyperparameters. In this paper, a hybrid approach composed of a gated recurrent unit neural network and an adaptive unscented Kalman filter method is proposed. A gated recurrent unit neural network is first used to acquire the nonlinear relationship between the battery state of charge and battery measurement signals, and then an adaptive unscented Kalman filter is utilized to filter out the output noise of the neural network to further improve estimation accuracy. The hybrid method avoids the establishment of accurate battery models and the search for optimal hyperparameters. The data of dynamical street test and US06 test are used as training dataset and validation dataset, respectively, while the data collected from the tests under federal urban driving schedules and Beijing driving cycle conditions are taken as testing dataset. As compared with some hybrid methods proposed in other literature, the hybrid method has the best estimation accuracy and generalization for various driving cycles at different ambient temperatures. The root mean square error and the mean absolute error all are less than 1.5%, and the maximum absolute error are less than 2%. In addition, it also exhibits powerful robustness against the abnormal values of the battery signals and can converge to the true value in just 5 seconds.

2021 ◽  
Vol 13 (9) ◽  
pp. 5046
Author(s):  
Jie Xing ◽  
Peng Wu

State of charge (SOC) of the lithium-ion battery is an important parameter of the battery management system (BMS), which plays an important role in the safe operation of electric vehicles. When existing unknown or inaccurate noise statistics of the system, the traditional unscented Kalman filter (UKF) may fail to estimate SOC due to the non-positive error covariance of the state vector, and the SOC estimation accuracy is not high. Therefore, an improved adaptive unscented Kalman filter (IAUKF) algorithm is proposed to solve this problem. The IAUKF is composed of the improved unscented Kalman filter (IUKF) that is able to suppress the non-positive definiteness of error covariance and Sage–Husa adaptive filter. The IAUKF can improve the SOC estimation stability and can improve the SOC estimation accuracy by estimating and correcting the system noise statistics adaptively. The IAUKF is verified under the federal urban driving schedule test, and the SOC estimation results are compared with IUKF and UKF. The experimental results show that the IAUKF has higher estimation accuracy and stability, which verifies the effectiveness of the proposed method.


2014 ◽  
Vol 513-517 ◽  
pp. 4076-4079 ◽  
Author(s):  
Liang Hui Li ◽  
Sheng Jun Peng ◽  
Zhen Xiang Jiang ◽  
Bo Wen Wei

By using unscented kalman filter (UKF) theory and introducing adaptive factor into BP neural network, a new prediction model of concrete dam deformation was proposed. Example shows that this model can improve the convergence speed of BP neural network, and the calculation precision of this model meets engineering requirements. Meanwhile, this model can be applied in the safety monitoring of other hydraulic engineering structure.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Luping Chen ◽  
Liangjun Xu ◽  
Ruoyu Wang

The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate.


Sign in / Sign up

Export Citation Format

Share Document