scholarly journals Uptake Prediction of Eight Potentially Toxic Elements by Pistia stratiotes L. Grown in the Al-Sero Drain (South Nile Delta, Egypt): A Biomonitoring Approach

2021 ◽  
Vol 13 (9) ◽  
pp. 5276
Author(s):  
Ebrahem M. Eid ◽  
Mohammed A. Dakhil ◽  
Loutfy M. Hassan ◽  
Shaimaa G. Salama ◽  
Tarek M. Galal

The potential to utilise the free-floating macrophyte Pistia stratiotes L. to survey contamination of the Al-Sero Drain in the South Nile Delta, Egypt, by eight potentially toxic elements (PTEs) was investigated in this study. This study considered the absorption of eight PTEs (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn), and the evaluated P. stratiotes were located in three sampling locations along the Al-Sero Drain, with sampling conducted in both monospecific and homogenous P. stratiotes. Samples of both types of P. stratiotes and water were collected on a monthly basis between May 2013 and April 2014 at each location, utilising three randomly chosen 0.5 × 0.5 m quadrats. Regression models were designed to predict the concentration of the PTEs within the plant’s shoot and root systems. Elevated water Fe levels were correlated with a rise in shoot system Fe concentration, whereas higher Ni concentrations in the water led to a higher Ni concentration within the root system. The latter was also true for Pb. Water Cu levels had a negative association with the Cu concentration within the P. stratiotes shoot system. Raised Fe levels were also correlated with a diminished Fe level within the roots. For all PTEs, P. stratiotes was characterised by a bioconcentration factor of more than 1.0, and for the majority by a translocation factor of less than 1.0. The goodness of fit for most of the designed models, as indicated by high R2 values and low mean averaged errors, demonstrated the associations between actual and predicted PTE concentrations. Any disparity between measured and predicted parameters failed to reach significance with Student t-tests, reinforcing the predictive abilities of the designed models. Thus, these novel models have potential value for the prediction of PTE uptake by P. stratiotes macrophytes inhabiting the Al-Sero Drain. Furthermore, the macrophyte’s constituents indicate the long-term impact of water contamination; this supports the potential future use of P. stratiotes for biomonitoring the majority of the PTEs evaluated in this study.

2021 ◽  
Author(s):  
Waseem sardar ◽  
Aziz Ur Rahman ◽  
javed nawab ◽  
Sardar Khan ◽  
Abid Ali ◽  
...  

Abstract In recent years, a series of environmental and ecological problems have occurred due to enhanced anthropogenic disturbances for precious minerals mining. Traditional medicines have become an important pillar in national homeopathic treatment system especially in mountainous environment of developing countries. The current study investigates the level of potentially toxic elements ( PTEs ) contamination in degraded mining soil and medicinal plants along the mafic-ultramafic rocks in the Kohistan region. Soil samples and medicinal plant species were collected from the degraded mining area and were screened for PTEs (Pb, Cr, Ni, Mn, Zn, and Cd) using atomic absorption spectrometry. Various pollution indices were used for PTEs such as contamination factor (CF), pollution load index (PLI) and translocation factor (TF) in degraded mining soil and medicinal plants. The mean concentration of PTEs found in soil were in order of Mn>Ni>Cr >Pb>Zn>Cd, while in medicinal plants were Pb>Cr>Mn>Ni>Zn>Cd. Highest bioaccumulation was observed in Ajuga bracteosa (Cr=349 mg kg –1 ), Phlomis bracteosa (Pb=335 mg kg –1 ), Chenopodium ambrosioides (Mn = 304.3 mg kg –1 ), Isatis costata (Ni=169 mg kg –1 ), Ajuga parviflora (Zn = 38.4 mg kg –1 ) and Salvia moorcoftiana (Cd=11 mg kg –1 ). Furthermore, the concentrations of PTEs were significantly higher ( p <0.001) in degraded mining soil and medicinal plants than the reference site, which may be attributed to the mining and open dumping of mining wastes. The present study revealed that chromite mining and open dumping of mining wastes can cause serious environmental problem in the study area. Furthermore, medicinal plants grown in degraded mining soil may pose risk to the local inhabitants as most of the people consume these plants for various health problems.


Author(s):  
Fangmeng Xiao ◽  
Zhanying Gu ◽  
Arbi Sarkissian ◽  
Yaxin Ji ◽  
RuonanYang ◽  
...  

AbstractPotentially toxic elements (PTEs) pollution has become a serious environmental threat, particularly in developing countries such as China. In response, there is a growing interest in phytoremediation studies to identify plant species as designated hyperaccumulators of PTEs in polluted soils. Poinsettia was selected as a candidate species for phytoremediation of six PTEs (Zn, Pb, Hg, Cr, As, Cu) in this study. A pot cultivation experiment (randomized incomplete block experimental design with 5 treatments and 4 blocks) was conducted using contaminated soils gathered from an industrial area in southcentral China. The bioaccumulation factor (BAF), translocation factor (TF), and bioconcentration factor were analyzed to determine the phytoremediation potential of poinsettia potted in different ratios of polluted soils. One-way ANOVA with post-hoc Tukey’s test showed that poinsettia had significant uptake of Zn, Pb, Cu (BAF < 1 and TF < 1, p < 0.05) and Hg (BAF < 1 and TF > 1, p < 0.05). Poinsettias can therefore effectively accumulate Zn, Pb, and Cu in their lateral roots while extracting and transferring Hg into their leaves. Moreover, poinsettia exhibited tolerance towards As and Cr. Interestingly, it was also observed that PTEs can inhibit the height of potted poinsettia at a certain concentration.


Author(s):  
Shufeng She ◽  
Bifeng Hu ◽  
Xianglin Zhang ◽  
Shuai Shao ◽  
Yefeng Jiang ◽  
...  

Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1, 68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these elements, only Cd and Hg showed significant accumulation compared with their background values. The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and then showed a decreasing trend. The results obtained from this study will provide guidance for the prevention and control of soil pollution in the Yangtze River Delta.


2021 ◽  
pp. 112285
Author(s):  
Neus González ◽  
Eudald Correig ◽  
Isa Marmelo ◽  
António Marques ◽  
Rasmus la Cour ◽  
...  

Author(s):  
Zahra Biglari Quchan Atigh ◽  
Pourya Sardari ◽  
Ebrahim Moghiseh ◽  
Behnam Asgari Lajayer ◽  
Andrew S. Hursthouse

Sign in / Sign up

Export Citation Format

Share Document