scholarly journals Improving the Performance of Single-Intersection Urban Traffic Networks Based on a Model Predictive Controller

2021 ◽  
Vol 13 (10) ◽  
pp. 5630
Author(s):  
Sadiqa Jafari ◽  
Zeinab Shahbazi ◽  
Yung-Cheol Byun

The use of a Model Predictive Controller (MPC) in an urban traffic network allows for controlling the infrastructure of a traffic network and errors in its operations. In this research, a novel, stable predictive controller for urban traffic is proposed and state-space dynamics are used to estimate the number of vehicles at an isolated intersection and the length of its queue. This is a novel control strategy based on the type of traffic light and on the duration of the green-light phase and aims to achieve an optimal balance at intersections. This balance should be adaptable to the unchanging behavior of time and to the randomness of traffic situations. The proposed method reduces traffic volumes and the number of crashes involving cars by controlling traffic on an urban road using model predictive control. A single intersection in Tehran, the capital city of Iran, was considered in our study to control traffic signal timing, and model predictive control was used to reduce traffic. A model of traffic systems was extracted at the intersection, and the state-space parameters of the intersection were designed using the model predictive controller to control traffic signals based on the length of the vehicle queue and on the number of inbound and outbound vehicles, which were used as inputs. This process demonstrates that this method is able to reduce traffic volumes at each leg of an intersection and to optimize flow in a road network compared to the fixed-time method.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mapopa Chipofya ◽  
Deok Jin Lee ◽  
Kil To Chong

This paper presents a solution to stability and trajectory tracking of a quadrotor system using a model predictive controller designed using a type of orthonormal functions called Laguerre functions. A linear model of the quadrotor is derived and used. To check the performance of the controller we compare it with a linear quadratic regulator and a more traditional linear state space MPC. Simulations for trajectory tracking and stability are performed in MATLAB and results provided in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jimin Yu ◽  
Yanan Xie ◽  
Xiaoming Tang

The model predictive control for constrained discrete time linear system under network environment is considered. The bounded time delay and data quantization are assumed to coexist in the data transmission link from the sensor to the controller. A novel NCS model is specially established for the model predictive control method, which casts the time delay and data quantization into a unified framework. A stability result of the obtained closed-loop model is presented by applying the Lyapunov method, which plays a key role in synthesizing the model predictive controller. The model predictive controller, which parameterizes the infinite horizon control moves into a single state feedback law, is provided which explicitly considers the satisfaction of input and state constraints. Two numerical examples are given to illustrate the effectiveness of the derived method.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 3 ◽  
Author(s):  
Eduardo Camacho ◽  
Antonio Gallego ◽  
Adolfo Sanchez ◽  
Manuel Berenguel

Model predictive control has been demonstrated to be one of the most efficient control techniques for solar power systems. An incremental offset-free state-space Model Predictive Controller (MPC) is developed for the Fresnel collector field located at the solar cooling plant installed on the roof of the Engineering School of Sevilla. A robust Luenberger observer is used for estimating the states of the plant which cannot be measured. The proposed strategy is tested on a nonlinear distributed parameter model of the Fresnel collector field. Its performance is compared to that obtained with a gain-scheduling generalized predictive controller. A real test carried out at the real plant is presented, showing that the proposed strategy achieves a very good performance.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2593
Author(s):  
Trieu Minh Vu ◽  
Reza Moezzi ◽  
Jindrich Cyrus ◽  
Jaroslav Hlava

The field of autonomous driving vehicles is growing and expanding rapidly. However, the control systems for autonomous driving vehicles still pose challenges, since vehicle speed and steering angle are always subject to strict constraints in vehicle dynamics. The optimal control action for vehicle speed and steering angular velocity can be obtained from the online objective function, subject to the dynamic constraints of the vehicle’s physical limitations, the environmental conditions, and the surrounding obstacles. This paper presents the design of a nonlinear model predictive controller subject to hard and softened constraints. Nonlinear model predictive control subject to softened constraints provides a higher probability of the controller finding the optimal control actions and maintaining system stability. Different parameters of the nonlinear model predictive controller are simulated and analyzed. Results show that nonlinear model predictive control with softened constraints can considerably improve the ability of autonomous driving vehicles to track exactly on different trajectories.


2019 ◽  
Vol 9 (7) ◽  
pp. 1372 ◽  
Author(s):  
Guoxing Bai ◽  
Li Liu ◽  
Yu Meng ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

Path tracking of mining vehicles plays a significant role in reducing the working time of operators in the underground environment. Because the existing path tracking control of mining vehicles, based on model predictive control, is not very effective when the longitudinal velocity of the vehicle is above 2 m/s, we have devised a new controller based on nonlinear model predictive control. Then, we compare this new controller with the existing model predictive controller. In the results of our simulation, the tracking accuracy of our controller at the longitudinal velocity of 4 m/s is close to that of the existing model predictive controller, at the longitudinal velocity of 2 m/s. When longitudinal velocity is 4 m/s, the existing model predictive controller cannot drive the mining vehicle to track the given path, but our nonlinear model predictive controller can, and the maximum displacement error and heading error are 0.1382 m and 0.0589 rad, respectively. According to these results, we believe that this nonlinear model predictive controller can be used to improve the performance of the path tracking of mining vehicles.


Author(s):  
Kai Zou ◽  
Yingfeng Cai ◽  
Long Chen ◽  
Xiaoqiang Sun

In order to increase the real-time performance of lateral trajectory tracking of unmanned vehicles, this paper designs an event-triggered nonlinear model predictive controller, which can save computation resource to a large extent while the tracking accuracy is still guaranteed. Firstly, a simplified vehicle is established using a two-degree-of-freedom dynamics model. Then, according to the theory of model predictive control, a nonlinear model predictive controller (NMPC) is designed. Since traditional NMPCs often have poor real-time control performance, this paper introduces an event-triggered mechanism, which allows the remaining elements of the control variables in the control horizon to be applied to the system once a specific condition is satisfied. Finally, the proposed controller is established by Matlab/Simulink, and the different trigger conditions are compared and verified in a double lane change maneuvers Then a system for evaluation is designed to quantify the performance of the controller in different trigger conditions. For further verification of the proposed controller, a Hard-in-the-loop simulation system based on Xpack package is established to conduct an HIL experiment. The results show that compared with traditional nonlinear model predictive control, our method offers greatly improved real-time performance while the tracking accuracy is guaranteed.


Sign in / Sign up

Export Citation Format

Share Document