scholarly journals The Role of Embodied Carbon Databases in the Accuracy of Life Cycle Assessment (LCA) Calculations for the Embodied Carbon of Buildings

2021 ◽  
Vol 13 (14) ◽  
pp. 7988
Author(s):  
Golnaz Mohebbi ◽  
Ali Bahadori-Jahromi ◽  
Marco Ferri ◽  
Anastasia Mylona

Studies conducted by major national and international scientific bodies have indisputably concluded that the increase in anthropogenic greenhouse gas emissions (GHG) since the mid-20th century has led to irreversible changes in the climate. Data has shown that the contribution of the building sector accounts for 39% of these emissions. Reducing GHG emissions associated with the construction phase of buildings, or embodied carbon (EC), will prevent GHG emissions from entering the atmosphere earlier, reducing the negative impacts. However, to achieve any meaningful reduction, there is a need for consistency and accuracy in the calculations. The accuracy of these calculations is primarily tied to the accuracy of embodied carbon factors (ECF) used in the calculations, values determining the environmental impact of a product or procedure per unit weight. The emissions of any product can be calculated by performing a Life Cycle Assessment (LCA). While the requirements for carrying out an LCA have been standardised in ISO14044, the lack of a definitive national ECF database in the UK means that EC calculations can vary drastically based on the chosen database. An LCA has been carried out on a standard Lidl supermarket design within the A1–A3 boundary. For the calculation, the ECFs were sourced from two different databases, using the GHG conversion factor data published in 2020 by the UK Department of Energy & Climate Change and data published in 2019 by the Inventory of Carbon and Energy (ICE). The latter is currently accepted as the most consistent database for carbon factors in the UK. This study showed that using a more detailed database compared to using a more general database could result in a 35.2% reduction of embodied carbon, while using more detailed data from a single database can reduce it by a further 5.5%. It is necessary to establish the most accurate baseline for embodied carbon so that any carbon reduction attempts can be as effective as possible.

2020 ◽  
Author(s):  
Benjamin Freeman ◽  
David Styles ◽  
Christopher Evans ◽  
David Chadwick ◽  
David Jones

<p>Global peatlands store >600 Gt of Carbon (C) but are highly vulnerable to degradation following drainage for agriculture. The extensively drained East Anglian Fens include half of England’s most productive agricultural land, produce ~33% of England’s vegetables and support a food production industry worth approximately £3 billion GBP.  However under arable management, these fen peat soils produce ~37.5 t CO<sub>2</sub> eq ha<sup>-1</sup> of total greenhouse gas (GHG) emissions annually. This is likely to be the largest source of land use GHG emissions in the UK per unit area and there is interest in developing responsible management approaches to reduce emissions whilst maintaining economically productive systems. Lettuce (Lactuca sativa) is amongst the UK’s most valuable crops and a substantial proportion of UK production occurs in the Fens. We undertook a life cycle assessment to compare the carbon footprint of UK Fen lettuce with alternative sources of lettuce for the UK market. We also examined the potential for responsible peat management strategies and more efficient production to reduce the carbon footprint of Fen lettuce. It is hoped this study will help to inform land use decision making and encourage responsible management of UK lowland peat resources.</p>


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


Author(s):  
Soumith Kumar Oduru ◽  
Pasi Lautala

Transportation industry at large is a major consumer of fossil fuels and contributes heavily to the global greenhouse gas emissions. A significant portion of these emissions come from freight transportation and decisions on mode/route may affect the overall scale of emissions from a specific movement. It is common to consider several alternatives for a new freight activity and compare the alternatives from economic perspective. However, there is a growing emphasis for adding emissions to this evaluation process. One of the approaches to do this is through Life Cycle Assessment (LCA); a method for estimating the emissions, energy consumption and environmental impacts of the project throughout its life cycle. Since modal/route selections are often investigated early in the planning stage of the project, availability of data and resources for analysis may become a challenge for completing a detailed LCA on alternatives. This research builds on such detailed LCA comparison performed on a previous case study by Kalluri et al. (2016), but it also investigates whether a simplified LCA process that only includes emissions from operations phase could be used as a less resource intensive option for the analysis while still providing relevant outcomes. The detailed LCA is performed using SimaPro software and simplified LCA is performed using GREET 2016 model. The results are obtained in terms of Kg CO2 equivalents of GHG emissions. This paper introduces both detailed and simplified methodologies and applies them to a case study of a nickel and copper mine in the Upper Peninsula of Michigan. The analysis’ are done for three modal alternatives (two truck routes and one rail route) and for multiple mine lives.


2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


2019 ◽  
Vol 11 (6) ◽  
pp. 1550 ◽  
Author(s):  
Fanying Zheng ◽  
Fu Gu ◽  
Wujie Zhang ◽  
Jianfeng Guo

As an icon of sharing economy and product service systems, bicycle sharing is gaining an increasing global popularity, yet there is little knowledge about the environmental performance of this emerging traveling mode. To seek the answer to the question, the paper employs a survey-based method and a life cycle assessment (LCA) approach. We first conduct a questionnaire-based survey to identify the changes in traveling modes after the introduction of shared bicycles. The survey results show that the use of shared bicycles is more popular among young and low-income populations, and shared bicycles are predominantly used to replace walking and bus-taking. Based on the survey results, we model the environmental impacts of the changed traveling behaviors and the life cycle of shared bicycle with the aid of Gabi software. The LCA results shows that bicycle sharing is currently an environmentally friendly practice, as it brings environmental savings in all the indicators except metal consumption. Further, the results of sensitivity analysis show that aging, rising rental fees, and increasing volume of shared bicycles would impart negative impacts on the environmental performance of bicycle sharing. The findings of this work facilitate the management and development of bicycle sharing.


2019 ◽  
Vol 218 ◽  
pp. 1-9 ◽  
Author(s):  
T. Ueda ◽  
E.S. Roberts ◽  
A. Norton ◽  
D. Styles ◽  
A.P. Williams ◽  
...  

1998 ◽  
Vol 38 (11) ◽  
pp. 23-30 ◽  
Author(s):  
F. J. Dennison ◽  
A. Azapagic ◽  
R. Clift ◽  
J. S. Colbourne

This paper presents the preliminary results of a Life Cycle Assessment (LCA) study comparing different wastewater treatment works, operated by Thames Water Utilities Ltd. in the UK. Fifteen works have been studied, representing a range of size and type of treatment works. Five management regimes for centralising sludge treatment and disposal were analyzed in the context of LCA to provide guidance on choosing the best practicable environmental option (BPEO). Consideration of Global warming potential indicates that the four proposed management regimes with centralisation of sludge for treatment and disposal, as adopted by Thames Water Utilities Ltd., is an environmental improvement upon the current practice. One of these options, that of complete centralisation and composting of sludge prior to disposal, exerts the least environmental impact with respect to Global warming potential. This suggests that the adoption of composting at Crawley is environmentally preferable to increasing the digestion facility at this works.


Sign in / Sign up

Export Citation Format

Share Document