scholarly journals A Unique Unified Wind Speed Approach to Decision-Making for Dispersed Locations

2021 ◽  
Vol 13 (16) ◽  
pp. 9340
Author(s):  
Ayman M. Mansour ◽  
Abdulaziz Almutairi ◽  
Saeed Alyami ◽  
Mohammad A. Obeidat ◽  
Dhafer Almkahles ◽  
...  

The repercussions of high levels of environmental pollution coupled with the low reserves and increased costs of traditional energy sources have led to the widespread adaptation of wind energy worldwide. However, the expanded use of wind energy is accompanied by major challenges for electric grid operators due to the difficulty of controlling and forecasting the production of wind energy. The development of methods for addressing these problems has therefore attracted the interest of numerous researchers. This paper presents an innovative method for assessing wind speed in different and widely spaced locations. The new method uses wind speed data from multiple sites as a single package that preserves the characteristics of the correlations among those sites. Powerful Waikato Environment for Knowledge Analysis (Weka) machine learning software has been employed for supporting data preprocessing, clustering, classification, visualization, and feature selection and for using a standard algorithm to construct decision trees according to a training set. The resultant arrangement of the sites according to likely wind energy productivity facilitates enhanced decisions related to the potential for the effective operation of wind energy farms at the sites. The proposed method is anticipated to provide network operators with an understanding of the possible productivity of each site, thus facilitating their optimal management of network operations. The results are also expected to benefit investors interested in establishing profitable projects at those locations.

Author(s):  
S. I. Nefedkin ◽  
A. O. Barsukov ◽  
M. I. Mozgova ◽  
M. S. Shichkov ◽  
M. A. Klimova

The paper proposes an alternative scheme of guaranteed electricity and heat supply of an energy-insulated facility with a high potential of wind energy without the use of imported or local fuel. The scheme represents a wind power complex containing the park of wind generators located at the points with high wind potential. The wind generators provide guaranteed power supply even in periods of weak wind. For heat supply of the consumer, all surplus of the electric power goes on thermoelectric heating of water in tanks of accumulators, and also on receiving hydrogen by a method of electrolysis of water. The current heat supply is carried out with the use of hot water storage tanks, and the heat supply during the heat shortage is carried out by burning the stored hydrogen in condensing hydrogen boilers. We have developed the algorithm of calculation and the program "Wind in energy" which allows calculating annual balance of energy and picking up necessary quantity of the equipment for implementation of the scheme proceeding from the annual schedule of thermal and electric loading, and also potential of wind energy in the chosen region. The calculation-substantiation of the scheme proposed in relation to the real energy-insulated object Ust-Kamchatsk (Kamchatka) is carried out. The equipment for the implementation of an alternative energy supply scheme without the use of imported fuel is selected and compared with the traditional energy supply scheme based on a diesel power plant and a boiler house operating on imported fuel. With the introduction of an alternative power supply scheme, the equipment of the traditional scheme that has exhausted its resource can be used for backup power supply. Using climate databases, a number of energy-insulated facilities in the North and East of Russia with high wind energy potential are considered and the conditions for the successful implementation of the energy supply scheme are analyzed. This requires not only a high average annual wind speed, but also a minimum number of days of weak wind. In addition, it is necessary that the profile of the wind speed distribution in the annual section coincides with the profile of the heat load consumption.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2021 ◽  
Vol 15 (1) ◽  
pp. 613-626
Author(s):  
Shahab S. Band ◽  
Sayed M. Bateni ◽  
Mansour Almazroui ◽  
Shahin Sajjadi ◽  
Kwok-wing Chau ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2012 ◽  
Vol 622-623 ◽  
pp. 1188-1193 ◽  
Author(s):  
Hüseyin Çamur ◽  
Youssef Kassem

The purpose of this work is to determine the drag characteristics and the torque of three C-section blades wind car. Three C-section blades are directly connected to wheels by using of various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. Previous work on three vertical blades wind car resulted in discrepancies when compared to this work. Investigating these differences was the motivation for this series of work. The calculated values were compared to the data of three vertical blades wind car. The work was conducted in a low wind speed. The drag force acting on each model was calculated with an airflow velocity of 4 m/s and angular velocity of the blade of 13.056 rad/s.


Sign in / Sign up

Export Citation Format

Share Document