weak wind
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Izleena Md. Iqbar ◽  
Fauzy Omar Basheer Othman ◽  
Hasmi Taib ◽  
M. Faizal Hamdan ◽  
Frank Adam ◽  
...  

Abstract Amid 2020 challenging business environments due to COVID-19 pandemic and strong global push towards transition to cleaner energy, PETRONAS has declared its' aspiration to achieve net zero carbon emissions by 2050. PETRONAS sustainability journey has begun for more than two decades and with strong management support towards renewable and as part of PETRONAS's technology agenda, its' research arm, PETRONAS Research Sdn. Bhd. (PRSB) has been working on ways to use renewable energy sources for offshore oil and gas platforms in Malaysia. Oil and Gas industry has long relied on turbine generators for offshore power generation. These turbo-fired machineries are operating as microgrid with existing power management system (PMS) as microgrid controllers. They normally use either gas or diesel as fuel gas to ensure reliable power generation where high maintence cost is expected to operate these generators. Also, they have low energy efficiency and hence, usually oversized to ensure meeting the demand reliably. Typically, the power generation load is being taken by two units of turbine generators with another unit as spare. This has resulted in high operational expenditure (OPEX) and contributes to high levelized cost of energy (LCOE) for offshore power generation for such conventional system. LCOE is the yardstick for power generation technology, and it measures discounted lifecycle cost consisting of both capital expenditure (CAPEX) and OPEX, divided by discounted lifecycle of annual energy production [2], [4], [5]. Also, these turbine generators operating at platforms that have gas evacuation pipelines will use up precious fuel gas which can otherwise be sold. This will have impact on the total sales gas revenue. Not withstanding, the burning of the fuel gas will result in the emissions of carbon dioxide (CO2) and hence is exposed to carbon tax. To mitigate this issue, PRSB has developed an offshore hybrid power generation concept to leverage and optimize wind turbine system for offshore power generation in weak wind area such as Malaysia. In this concept, one gas turbine generator is replaced by an offshore wind turbine adapted to low wind speed region. This will lower the maintenance cost and carbon exposure. Also, the fuel gas will be diverted to sales gas. This in turn will improve the economics of the renewable solution thereby making offshore renewable power generation feasible for oil and gas platforms. Forward thinking efforts include pushing the limits of harnessing wind energy in weak wind area such as Malaysia. In here, considerations of a total solution include not only the type of wind turbine generator that can be adapted to weak wind area and having the lowest maintenance requirements as possible, but also looking into cutting edge foundation technologies. The LCOE is expected to be lower than conventional power generation. To ensure optimized hybrid concept, careful selection and adaptations of wind turbine system and its' substructure are required to achieve a cost-effective solution [3], [2]. Conceptual engineering and front-end engineering design were conducted which resulted in the development of the hybrid offshore power generation system. In this paper, the hybrid concept will be shown, the considerations for selection of a suitable wind turbine will be shared and the decisions leading the to the selection and optimization of the foundation type, either fixed bottom or floating are elaborated.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1649
Author(s):  
Hee-Jeong Lim ◽  
Young-Hee Lee

We evaluated the performance of the high-resolution (333 m) Weather Research and Forecasting (WRF) model in simulating the flow structure at a complex coastal site in Boseong, South Korea, on 15 July 2018, against observations obtained from a 300 m tower and radiosonde, and analyzed the model results to interpret the measurements. The study site is surrounded by mountains, valleys, and bays, and is adjacent to the South Sea; thus, it is influenced by terrain-forced flow and thermally driven circulation. The study day was characterized by the development of nighttime low-level wind maximum (LLWM) and daytime sea breeze under weak synoptic wind conditions. Although the WRF model simulated the onset and cessation of a sea breeze later than was observed, it showed good skill in reproducing the near-surface temperatures, wind vectors, and vertical profiles of potential temperatures and wind vectors in the atmospheric boundary layer at the study site. We analyzed the model results at 05:30 and 14:30 LST when the model’s performance was good for wind. At 05:30 LST, hydraulic jump produced weak wind conditions below 300 m above ground level (AGL), and westerly down-valley flow developed near the surface, leading to an LLWM. At 14:30 LST, heating over land produced a thermal high over land at 1800 m AGL, counteracting the synoptic pressure gradient, and leading to weak wind conditions at this level. We performed three sensitivity simulations to examine the dependence of flow structure on the horizontal and vertical resolution. The results show that an early-morning hydraulic jump can be simulated by applying a high-resolution model in both the horizontal and vertical grids, and the simulated onset and cessation times of the sea breeze depend on the model’s resolution. The dependence of flow structure on the model resolution has been discussed.


2021 ◽  
Author(s):  
Xia Li ◽  
Yongjie Pan ◽  
Yingsha Jiang

Abstract Near-surface wind speed is of great significance in many aspects of the human production and living. This study analyses the spatiotemporal characteristics of the near-surface wind speed and wind speed percentiles with meteorological station observations in China from 1979 to 2019. Furthermore, the mechanisms of the wind speed variations are also investigated with ERA-Interim reanalysis dataset. Spatially, the wind speeds in the northern and eastern regions of China are larger than that in the central and southern regions. Seasonally, the wind speed in spring is significantly larger than that in the other seasons. The dispersion degree of wind speed in spring is larger than that in the other seasons both spatially and temporally. The near-surface wind speed in China shows significantly decreasing trends during 1979–2019, particularly in 1979–1999, but the wind speed trend reversed after 2000. After dividing the wind speed into different percentiles, it recognizes that the decreasing trend of stronger winds are more significant than that of weaker winds. The weaker the wind speed, the more significant increasing trend after 2000. Therefore, the decreasing wind speed trend before 2000 is mainly caused by the significant reduction of strong wind, while the reversal trend after 2000 results from the increase of weak wind. The variations of the wind speed over China attributed to both the U and V wind components, and the variations of zonal wind is closely related to the weakened upper westerly wind field and the uneven warming between high and low latitudes.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012014
Author(s):  
D A Sergeev ◽  
A A Kandaurov ◽  
Yu I Troitskaya

Abstract The influence of nonbreaking waves on the mixing processes in the upper layer of the ocean during wind-wave interaction was investigated under the conditions of laboratory modeling at the Thermostratified Wind Wave Tank (TSWiWaT) of IAP RAS. Experiments of three types were performed. In the first experiment, shear flow in water was induced using a weak wind to avoid the excitation of surface waves. In the second experiment, in the absence of wind, only a long smooth surface wave was generated using an underwater paddle wavemaker. The third type of experiment combined the conditions of the previous two, i.e. at the same time the wave generator was working and the wind was blowing. In all experiments, the underwater flow characteristics were measured using the PIV method. Vertical profiles of the mean velocity and fluctuations for two components were obtained. It was shown that the presence of waves leads to an increase in the average drift current, as well as, more importantly, on the level of fluctuations over the entire depth of the recorded profile by more than 3 times. This was observed for horizontal and vertical turbulent velocity components both.


2021 ◽  
Vol 26 (4) ◽  
pp. 225-236
Author(s):  
Mochamad Riza Iskandar ◽  
Adi Purwandana ◽  
Dewi Surinati ◽  
Wang Zheng

Halmahera Sea is one of the locations in the eastern route of Indonesian Throughflow (ITF), where high salinity water is mainly transported by the ITF. The description of water mass in the Halmahera Sea from the perspective of water mass, and related mixing is important. It is not only useful for understanding water mass features, but it can also be used to determine the strength of the turbulent mixing, and so allow how it relates to the water transformation. Here, we report the water mass properties and estimation of mixing quantities in the Halmahera Sea from the CTD profiles based on recent onboard observations during the IOCAS cruise in November 2016. The water mass analysis was done by examining the characteristics of water types in the Temperature-Salinity (T-S) diagram. The mixing estimation uses the density profile derived from temperature and salinity profiles and the quantification of vertical turbulence observed by density overturn. Halmahera Sea is to be found as the location where the thermocline salinity changes abruptly, it is shown from the erosion of salinity maximum in the density of 22-26σθ decreased from the north to the south of the basin. It is associated with strong mixing with spots of higher vertical diffusivity in the thermocline and intermediate layer. In the upper layer, the mixed layer depth in the Halmahera Sea is relatively shallow with an average of about 16.95 m and it is associated with weak wind stress during this month.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Long ◽  
Wenlin Liu ◽  
Zhao Wang ◽  
Wencong He ◽  
Gui Li ◽  
...  

AbstractNon-contact triboelectric nanogenerator (TENG) enabled for both high conversion efficiency and durability is appropriate to harvest random micro energy owing to the advantage of low driving force. However, the low output (<10 μC m−2) of non-contact TENG caused by the drastic charge decay limits its application. Here, we propose a floating self-excited sliding TENG (FSS-TENG) by a self-excited amplification between rotator and stator to achieve self-increased charge density, and the air breakdown model of non-contact TENG is given for a maximum charge density. The charge density up to 71.53 μC m−2 is achieved, 5.46 times as that of the traditional floating TENG. Besides, the high output enables it to continuously power small electronics at 3 m s−1 weak wind. This work provides an effective strategy to address the low output of floating sliding TENG, and can be easily adapted to capture the varied micro mechanical energies anywhere.


2021 ◽  
Author(s):  
Philipp Franke ◽  
Anne Caroline Lange ◽  
Hendrik Elbern

Abstract. A particle filter based inversion system to derive time- and altitude-resolved volcanic ash emission fluxes along with its uncertainty is presented. For the underlying observation information only vertically integrated ash load data as provided by retrievals from nadir looking imagers mounted on geostationary satellites is assimilated. We aim to estimate the temporally varying emission profile with error margins, along with evidence of its dependencies on wind driven transport patterns within variable observation intervals. Thus, a variety of observation types, although not directly related to volcanic ash, can be utilized to constrain the probabilistic volcanic ash estimate. The system validation addresses the special challenge of ash cloud height analyses in case of observations restricted to bulk column mass loading information, mimicking the typical case of geostationary satellite data. The underlying method rests on a linear-combination of height-time emission finite elements of arbitrary resolution, each of which is assigned to a model run subject to ensemble-based space-time data assimilation. Employing a modular concept, this setup builds the Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS-chem) that comprises a particle smoother in combination with a discrete-grid ensemble extension of the Nelder-Mead minimization method. The ensemble version of the EURopean Air pollution Dispersion – Inverse Model (EURAD-IM) is integrated into ESIAS-chem but can be replaced by other models. The performance of ESIAS-chem is tested by identical twin experiments. The application of the inversion system to two notional sub-Plinian eruptions of the Eyjafjallajökull with strong ash emission changes with time and injection heights demonstrate the ability of ESIAS-chem to retrieve the volcanic ash emission fluxes from the assimilation of column mass loading data only. However, the analysed emission profiles strongly differ in their levels of accuracy depending of the strength of wind shear conditions. Under strong wind shear conditions at the volcano the temporal and vertical varying volcanic emissions are analyzed up to an error of only 10 % for the estimated emission fluxes. For weak wind shear conditions, however, analysis errors are larger and ESIAS-chem is less able to determine the ash emission flux variations. This situation, however, can be remedied by extending the assimilation window. In the performed test cases, the ensemble predicts the location of high volcanic ash column mass loading in the atmosphere with a very high probability of > 95 %. Additionally, the ensemble is able to provide a vertically resolved probability map of high volcanic ash concentrations to a high accuracy for both, high and weak wind shear conditions.


2021 ◽  
Vol 20 (4A) ◽  
pp. 1-10
Author(s):  
Tran Van Chung ◽  
Ngo Manh Tien ◽  
Cao Van Nguyen

Temperature and wind on the sea surface are factors affecting the development of coral reefs in the seawaters. The research results show that the warming of sea water under the condition of weak wind field is considered a major threat to the bleaching of coral reefs in the sea areas of the Ninh Thuan - Binh Thuan provinces.


Author(s):  
C. Lagae ◽  
F. A. Driessen ◽  
L. Hennicker ◽  
N. D. Kee ◽  
J. O. Sundqvist
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document