gulf of oman
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 80)

H-INDEX

30
(FIVE YEARS 4)

Author(s):  
Sara Karami

Introduction: The entry of dust particles into water areas, which has increased sharply in recent years, causes a lot of environmental damage. The Persian Gulf and the Gulf of Oman are among the water areas that are covered with dust many times of the year. Materials and methods: In this study, a severe dust from July 27 to 31, 2018 is analyzed, in which a large part of the Persian Gulf, Oman Sea and the western part of the Indian Ocean was involved. To study this phenomenon from different perspectives, satellite products, visibility from synoptic stations and synoptic maps were analyzed and the output of two numerical dust models of NASA-GEOS and DREAM8-MACC were examined. To qualitative and quantitative evaluate of the model outputs, the Aerosol Optical Depth (AOD) of TERRA/MODIS was used. Results: Satellite imagery shows that in this case study, parts of the Persian Gulf and the Sea of Oman were affected by dust, and on July 30, dust particles entered the western half of the Indian Ocean. Comparison of model outputs with satellite data resulted that both models underestimate the AOD values, especially over water, and do not show well the entrance of dust particles into the eastern part of the Persian Gulf, the Gulf of Oman and the western half of the Indian Ocean. Conclusion: Qualitative and quantitative comparison of AOD output of the two models with satellite data showed that the NASA-GEOS model had better performance and its output correlation with observational data was higher.    


2021 ◽  
pp. 097508782110492
Author(s):  
Rulah Odeh Alsawalqa ◽  
Denis Venter

There are a daunting number of maritime security threats and challenges in the north-western Indian Ocean region, both extant and potential. Indeed, the mere fact that the Indian Ocean constitutes the world’s largest swath of maritime space that is prone to the major menace of piracy (in the Gulf of Oman, the Arabian Sea, the Gulf of Aden and in the waters off the north-east African coastline), as well as the sporadic threat of terrorism (by Islamic militias of Al-Shabaab in Somalia and Al-Qaeda in the Arabian Peninsula in Yemen), signifies that the region will arguably remain the maritime area with the greatest array of security challenges. However, while anti-piracy measures ought to have shaped regional policymaking, and the resources that a large and diverse group of states has devoted to addressing these maritime challenges have never been adequate to the task, largely successful coalition-building exercises and joint naval task-force operations have been encouraging. The transformation of Somali piracy from a haphazard activity into a highly organised, professionalised criminal enterprise is briefly elucidated by greed-grievance theory and supplemented by the theory of crime, also known as routine-activity theory.


2021 ◽  
Vol 9 (11) ◽  
pp. 1244
Author(s):  
Kamran Koohestani ◽  
Mohammad Nabi Allahdadi ◽  
Nazanin Chaichitehrani

The category 5-equivalent tropical Cyclone Gonu (2007) was the strongest cyclone to enter the northern Arabian Sea and Gulf of Oman. The impact of this cyclone on the sea surface temperature (SST) cooling and deepening of the mixed layer was investigated herein using an optimally interpolated (OI) cloud-free sea surface temperature (SST) dataset, climatological profiles of water temperature, and data from Argo profilers. SST data showed a maximum cooling of 1.7–6.5 °C during 1–7 June 2007 over the study area, which is similar to that of slow- to medium-moving cyclones in previous studies. The oceanic heat budget equation with the assumptions of the dominant turbulent mixing effect was used to establish relationships between SST and mixed layer depth (MLD) for regions that were directly affected by cyclone-induced turbulent mixing. The relationships were applied to the SST maps from satellite to obtain maps of MLD for 1–7 June, when Gonu was over the study area. Comparing with the measured MLD from Argo data showed that this approach estimated the MLDs with an average error of 15%, which is an acceptable amount considering the convenience of this approach in estimating MLD and the simplifications applied in the heat budget equation. Some inconsistencies in calculating MLD were attributed to use of climatological temperature profiles that may not have appropriately represented the pre-cyclone conditions due to pre-existing cold/warm core eddies. Estimation of the diapycnal diffusion that quantified the turbulent mixing across the water column showed consistent temporal and spatial variations with the calculated MLDs.


2021 ◽  
pp. 110169
Author(s):  
Amin Rashidi ◽  
Denys Dutykh ◽  
Nasser Keshavarz ◽  
Laurence Audin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilson Sebastian ◽  
Sandhya Sukumaran ◽  
S. Abdul Azeez ◽  
K. R. Muraleedharan ◽  
P. K. Dinesh Kumar ◽  
...  

AbstractThe adaptive genetic variation in response to heterogeneous habitats of the Indian Ocean was investigated in the Indian oil sardine using ddRAD sequencing to understand the subpopulation structure, stock complexity, mechanisms of resilience, and vulnerability in the face of climate change. Samples were collected from different ecoregions of the Indian ocean and ddRAD sequencing was carried out. Population genetic analyses revealed that samples from the Gulf of Oman significantly diverged from other Indian Ocean samples. SNP allele-environment correlation revealed the presence of candidate loci correlated with the environmental variables like annual sea surface temperature, chlorophyll-a, and dissolved oxygen concentration which might represent genomic regions allegedly diverging as a result of local adaptation. Larval dispersal modelling along the southwest coast of India indicated a high dispersal rate. The two major subpopulations (Gulf of Oman and Indian) need to be managed regionally to ensure the preservation of genetic diversity, which is crucial for climatic resilience.


Geosphere ◽  
2021 ◽  
Author(s):  
Bruce Levell ◽  
Michael Searle ◽  
Adrian White ◽  
Lauren Kedar ◽  
Henk Droste ◽  
...  

Late Cretaceous obduction of the Semail ophiolite and underlying thrust sheets of Neo-Tethyan oceanic sediments onto the submerged continental margin of Oman involved thin-skinned SW-vergent thrusting above a thick Guadalupian–Cenomanian shelf-carbonate sequence. A flexural foreland basin (Muti and Aruma Basin) developed due to the thrust loading. Newly available seismic reflection data, tied to wells in the Gulf of Oman, suggest indirectly that the trailing edge of the Semail Ophiolite is not rooted in the Gulf of Oman crust but is truncated by an ENE-dipping extensional fault parallel to the coastline. This fault is inferred to separate the Semail ophiolite to the SW from in situ oceanic Gulf of Oman crust to the NE. It forms the basin margin to a “hinterland” basin formed atop the Gulf of Oman crust, in which 5 km of Late Cretaceous deep-water mudstones accumulated together with 4 km of Miocene and younger deep-water mudstones and sandstones. Syndepositional folding included Paleocene–Eocene folds on N-S axes, and Paleocene to Oligocene growth faults with roll-over anticlines, along the basin flank. Pliocene compression formed, or tightened, box folds whose axes parallel the modern coast with local south-vergent thrusts and reversal of the growth faults. This Pliocene compression resulted in large-scale buckling of the Cenozoic section, truncated above by an intra-Pliocene unconformity. A spectacular 60-km-long, Eocene(?) to Recent, low-angle, extensional, gravitational fault, down-throws the upper basin fill to the north. The inferred basement of the hinterland basin is in situ Late Cretaceous oceanic lithosphere that is subducting northwards beneath the Makran accretionary prism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon E. Coppard ◽  
Holly Jessop ◽  
Harilaos A. Lessios

AbstractThe sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.


Sign in / Sign up

Export Citation Format

Share Document