scholarly journals Evaluating the potential of offshore wind energy in the Gulf of Oman using the MENA-CORDEX wind speed data simulations

2021 ◽  
Vol 15 (1) ◽  
pp. 613-626
Author(s):  
Shahab S. Band ◽  
Sayed M. Bateni ◽  
Mansour Almazroui ◽  
Shahin Sajjadi ◽  
Kwok-wing Chau ◽  
...  
Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1416
Author(s):  
Mario López ◽  
Noel Rodríguez-Fuertes ◽  
Rodrigo Carballo

This work assesses for the first time the offshore wind energy resource in Asturias, a region in the North of Spain. Numerical model and observational databases are used to characterize the gross wind energy resource at different points throughout the area of study. The production of several wind turbines is then forecasted on the basis of each technology power curve and the wind speed distributions. The results are mapped for a better interpretation and discussion.


2021 ◽  
Vol 6 (4) ◽  
pp. 1043-1059
Author(s):  
Mithu Debnath ◽  
Paula Doubrawa ◽  
Mike Optis ◽  
Patrick Hawbecker ◽  
Nicola Bodini

Abstract. As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. Such understanding has been hindered by a lack of publicly available wind profile observations in offshore wind energy areas. However, the New York State Energy Research and Development Authority recently funded the deployment of two floating lidars within two current lease areas off the coast of New Jersey. These floating lidars provide publicly available wind speed data from 20 to 200 m height with a 20 m vertical resolution. In this study, we leverage a year of these lidar data to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. In designing a detection algorithm for these events, we find that the typical, non-dimensional power-law-based wind shear exponent is insufficient to identify many of these extreme, high-wind-speed events. Rather, we find that the simple vertical gradient of wind speed better captures the events. Based on this detection method, we find that almost 100 independent events occur throughout the year with mean wind speed at 100 m height and wind speed gradient of 16 m s−1 and 0.05 s−1, respectively. The events have strong seasonal variability, with the highest number of events in summer and the lowest in winter. A detailed analysis reveals that these events are enabled by an induced stable stratification when warmer air from the south flows over the colder mid-Atlantic waters, leading to a positive air–sea temperature difference.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2728 ◽  
Author(s):  
Longfu Luo ◽  
Xiaofeng Zhang ◽  
Dongran Song ◽  
Weiyi Tang ◽  
Jian Yang ◽  
...  

As onshore wind energy has depleted, the utilization of offshore wind energy has gradually played an important role in globally meeting growing green energy demands. However, the cost of energy (COE) for offshore wind energy is very high compared to the onshore one. To minimize the COE, implementing optimal design of offshore turbines is an effective way, but the relevant studies are lacking. This study proposes a method to minimize the COE of offshore wind turbines, in which two design parameters, including the rated wind speed and rotor radius are optimally designed. Through this study, the relation among the COE and the two design parameters is explored. To this end, based on the power-coefficient power curve model, the annual energy production (AEP) model is designed as a function of the rated wind speed and the Weibull distribution parameters. On the other hand, the detailed cost model of offshore turbines developed by the National Renewable Energy Laboratory is formulated as a function of the rated wind speed and the rotor radius. Then, the COE is formulated as the ratio of the total cost and the AEP. Following that, an iterative method is proposed to search the minimal COE which corresponds to the optimal rated wind speed and rotor radius. Finally, the proposed method has been applied to the wind classes of USA, and some useful findings have been obtained.


2020 ◽  
Author(s):  
Mithu Debnath ◽  
Paula Doubrawa ◽  
Mike Optis ◽  
Patrick Hawbecker ◽  
Nicola Bodini

Abstract. As the offshore wind industry emerges on the U.S. East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. Such understanding has been hindered by a lack of publicly available wind profile observations in offshore wind energy areas. However, the New York State Energy Research and Development Authority (NYSERDA) recently funded the deployment of two floating lidars within two current lease areas off the coast of New Jersey. These floating lidars provide publicly available wind speed data from 20 m to 200 m height with 20-m vertical resolution. In this study, we leverage a year of these lidar data to quantify and characterize the frequent occurrence of high wind shear and low-level jet events, both of which will have considerable impact on turbine operation. We find that almost 100 independent events occur throughout the year with mean wind speed at 100 m height and power-law exponent of 16 m/s and 0.28, respectively. The events have strong seasonal variability, with the highest number of events in summer and the lowest in winter. A detailed analysis reveals that these events are enabled by an induced stable stratification when when warmer air from the south flows over the colder mid-Atlantic waters, leading to a positive air–sea temperature difference.


Introduction. One of the most popular alternative sources is wind energy. Offshore power stations are those which use kinetic energy of the wind and are built in shallow seas. Ukraine has access to the Black Sea and the Sea of Azov and has set the course to intensify the use of its own energy sources. It is therefore advisable to consider the development of offshore wind energy in its coastal zones. The purpose of this article is to analyze the energy potential of the coastal zone of the Sea of Azov to determine the prospects for offshore wind energy development. The main material. The economically feasible wind power of Ukraine is 16 GW but a significant percentage of its territory is not suitable for the installation of wind power plants, so it is advisable to use the seas area. In the coastal regions of Ukraine the average wind speed exceeds 5 m/s, which makes them effective in terms of using wind energy. Using GIS modeling, based on the data from the Global Atlas for Renewable Energy «IRENA», the spatial distribution of the average annual wind speed over the Sea of Azov at an altitude of 50, 100, 200 m has been analyzed. Due to the wind speed from 6 to 9 m/s, the Sea of Azov has significant wind energy potential. Wind speed rising from west to east has been detected. The concentration zone of maximum wind speed is the northern and north-eastern coast of the Sea of Azov. Accordingly, most electricity can be produced in Taganrog Bay, and the smallest amount– at the western coast of the sea. The data on the the generated power that could be extracted by a turbine installed in these areas at different altitudes has been calculated. At an altitude of 200 m, the figures are maximum and range from 9.4 to 30.3 GWh/year. In general, the wind indexes as well as the area of the zones suitable for the installation of wind farms increase with a height. In this case, it is economically advantageous to install large wind turbines with a tower height at 100 m. Conclusions and further research. The offshore wind energy in the coastal zone of the Sea of Azov can be developed, but it needs support at the state level. The prospect of this study is to analyze the limiting factors for this water area and to clarify the design areas of the industry.


2018 ◽  
Vol 3 (2) ◽  
pp. 573-588 ◽  
Author(s):  
Tobias Ahsbahs ◽  
Merete Badger ◽  
Patrick Volker ◽  
Kurt S. Hansen ◽  
Charlotte B. Hasager

Abstract. Rapid growth in the offshore wind energy sector means more offshore wind farms are placed closer to each other and in the lee of large land masses. Synthetic aperture radar (SAR) offers maps of the wind speed offshore with high resolution over large areas. These can be used to detect horizontal wind speed gradients close to shore and wind farm wake effects. SAR observations have become much more available with the free and open-access data from European satellite missions through Copernicus. Examples of applications and tools for using large archives of SAR wind maps to aid offshore site assessment are few. The Anholt wind farm operated by the utility company Ørsted is located in coastal waters and experiences strong spatial variations in the mean wind speed. Wind speeds derived from the Supervisory Control And Data Acquisition (SCADA) system are available at the turbine locations for comparison with winds retrieved from SAR. The correlation is good, both for free-stream and waked conditions. Spatial wind speed variations along the rows of wind turbines derived from SAR wind maps prior to the wind farm construction agree well with information gathered by the SCADA system and a numerical weather prediction model. Wind farm wakes are detected by comparisons between images before and after the wind farm construction. SAR wind maps clearly show wakes for long and constant fetches but the wake effect is less pronounced for short and varying fetches. Our results suggest that SAR wind maps can support offshore wind energy site assessment by introducing observations in the early phases of wind farm projects.


2018 ◽  
Author(s):  
Tobias Ahsbahs ◽  
Merete Badger ◽  
Patrick Volker ◽  
Kurt S. Hansen ◽  
Charlotte B. Hasager

Abstract. Rapid growth in the offshore wind energy sector means more offshore wind farms are placed closer to each other and in the lee of large land masses. Synthetic Aperture Radar (SAR) offers maps of the wind speed offshore with high resolution over large areas. These can be used to detect horizontal wind speed gradients close to shore and wind farm wake effects. SAR observations have become much more available with the free and open access to data from European satellite missions through Copernicus. Examples of applications and tools for using large archives of SAR wind maps to aid offshore site assessment are few. The Anholt wind farm operated by the utility company Ørsted is located in coastal waters and experiences strong spatial variations in the mean wind speed. Wind speeds derived from the Supervisory Control And Data Acquisition (SCADA) system are available at the turbine locations for comparison with winds retrieved from SAR. The correlation is good, both for free stream and waked conditions. Spatial wind speed variations within the wind farm derived from SAR wind maps prior to the wind farm construction are found to agree well with information gathered by the SCADA system and numerical weather prediction models. Wind farm wakes are detected by comparisons between images before and after the wind farm construction. SAR wind maps clearly show wakes for long constant fetches but the wake effect is less pronounced for short varying fetches. Our results suggest that SAR wind maps can support offshore wind energy site assessment by introducing observations in the early phases of wind farm projects.


2021 ◽  
Vol 6 (24) ◽  
pp. 200-212
Author(s):  
Mat Nizam Uti ◽  
Ami Hassan Md Din ◽  
Norhakim Yusof ◽  
Omar Yaakob

A detailed understanding of wind characteristics is very important for offshore wind energy development. A 26 years of wind speed data (1993-2018) were retrieved using Radar Altimeter Database System (RADS) to assess the potentiality of offshore wind energy in Terengganu waters. Seasonal assessment and wind energy density derivation was carried out to choose the potential location for wind energy development. This study highlights the multi-criteria site suitability analysis using Analytical Hierarchy Process (AHP) and is supported by the geographical information system (GIS) by developing a suitability map. The site suitability analysis considered a few criteria, such as seasonal assessment, physical, environmental, and wind resources. Theoretically, the Terengganu area possessed strong wind during the Northeast monsoon with an average of 3.46m/s and experienced up to 6 m/s during this monsoon. For offshore areas, which is more than 50km from the coastline, Terengganu waters experienced a maximum of wind speed more than 5m/s and the average wind power density varied from 40W/m2 to 60W/m2. While Tenggol Island possessed a maximum wind speed between 3m/s to 5m/s and produce up to 40W/m2 of average wind energy density. From the suitability analysis, a few areas are identified as the potential location with an optimum resource of wind energy. Even though, Malaysia is located at low wind area, this research will help organisation or governments to plan suitable technology and policy for harvesting wind energy.


Sign in / Sign up

Export Citation Format

Share Document