scholarly journals Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP

2022 ◽  
Vol 14 (2) ◽  
pp. 700
Author(s):  
Kai-Yen Chin ◽  
Angus Shiue ◽  
Yi-Jing Wu ◽  
Shu-Mei Chang ◽  
Yeou-Fong Li ◽  
...  

During the production process of commercial carbon fiber reinforced polymers (CFRPs), a silane coupling agent is added to the carbon fiber at the sizing step as a binder to enhance the product’s physical properties. While improving strength, the silane coupling agent results in a silane residue on recovered carbon fibers (rCF) after recycling, which is a disadvantage when using recovered carbon fibers in the manufacture of new materials. In this study, the rCF is recovered from waste carbon fiber reinforced polymers (CFRPs) from the bicycle industry by a microwave pyrolysis method, applying a short reaction time and in an air atmosphere. Moreover, the rCF are investigated for their surface morphologies and the elements present on the surface. The silicon element content changes with pyrolysis temperature were 0.4, 0.9, and 0.2%, respectively, at 450, 550, and 650 °C. Additionally, at 950 °C, silicon content can be reduced to 0.1 ± 0.05%. The uniformity of microwave pyrolysis recycle treatment was compared with traditional furnace techniques used for bulk waste treatment by applying the same temperature regime. This work provides evidence that microwave pyrolysis can be used as an alternative method for the production of rCFs for reuse applications.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 726 ◽  
Author(s):  
Andrea Mantelli ◽  
Alessia Romani ◽  
Raffaella Suriano ◽  
Marco Diani ◽  
Marcello Colledani ◽  
...  

Despite the growing global interest in 3D printed carbon fiber reinforced polymers, most of the applications are still limited to high-performance sectors due to the low effectiveness–cost ratio of virgin carbon fibers. However, the use of recycled carbon fibers in 3D printing is almost unexplored, especially for thermoset-based composites. This paper aims to demonstrate the feasibility of recycled carbon fibers 3D printing via UV-assisted direct ink writing. Pyrolyzed recycled carbon fibers with a sizing treatment were firstly shredded to be used as a reinforcement of a thermally and photo-curable acrylic resin. UV-differential scanning calorimetry analyses were then performed to define the material crosslinking of the 3D printable ink. Because of the poor UV reactivity of the resin loaded with carbon fibers, a rheology modifier was added to guarantee shape retention after 3D printing. Thanks to a customized 3D printer based on a commercial apparatus, a batch of specimens was successfully 3D printed. According to the tensile tests and Scanning Electron Microscopy analysis, the material shows good mechanical properties and the absence of layer marks related to the 3D printing. These results will, therefore, pave the way for the use of 3D printed recycled carbon fiber reinforced polymers in new fields of application.


2014 ◽  
Vol 1018 ◽  
pp. 131-136 ◽  
Author(s):  
Katrin Moeser

Carbon fiber reinforced polymers (CFRPs), particularly epoxy resins, are increasingly applied in innovative products nowadays. At the end of the life cycle of those products, CFRP waste has to be disposed in an ecological way. As of today, no energy effective recycling method is available to recover the valuable carbon fibers in a good quality. The presented study aims to exploit the ability of biological systems in order to efficiently and specifically degrade the polymer and release carbon fibers with minimal material strain. In a first approach environmental microorganisms for degrading the polymer component of epoxy composites into small fragments have to be identified. An analytical method will be developed to identify and quantify the polymer degradation. In a following step, the enzymes that are produced by the microorganisms and are essential for the polymer degradation will be identified, cloned, produced in a high amount and characterized in CFRP recycling studies.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5545
Author(s):  
Francesca Lionetto

The current demand for lightweight and high-performance structures leads to increasing applications of carbon fiber reinforced polymers, which is also made possible by novel production methods, automation with repeatable quality, the reduced cost of carbon fibers, out of autoclave processes such as resin transfer molding and resin infusion technologies, the re-use of waste fibers, development in preform technology, high-performance, fast-curing resins, etc [...]


Sign in / Sign up

Export Citation Format

Share Document