scholarly journals Harmonic Index and Harmonic Polynomial on Graph Operations

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 456 ◽  
Author(s):  
Juan Hernández-Gómez ◽  
J. Méndez-Bermúdez ◽  
José Rodríguez ◽  
José M.  Sigarreta

Some years ago, the harmonic polynomial was introduced to study the harmonic topological index. Here, using this polynomial, we obtain several properties of the harmonic index of many classical symmetric operations of graphs: Cartesian product, corona product, join, Cartesian sum and lexicographic product. Some upper and lower bounds for the harmonic indices of these operations of graphs, in terms of related indices, are derived from known bounds on the integral of a product on nonnegative convex functions. Besides, we provide an algorithm that computes the harmonic polynomial with complexity O ( n 2 ) .

2019 ◽  
Vol 11 (05) ◽  
pp. 1950054 ◽  
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai

The third leap Zagreb index of a graph [Formula: see text] is denoted as [Formula: see text] and is defined as [Formula: see text], where [Formula: see text] and [Formula: see text] are the 2-distance degree and the degree of the vertex [Formula: see text] in [Formula: see text], respectively. The first, second and third leap Zagreb indices were introduced by Naji et al. [A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Combin. Optim. 2(2) (2017) 99–117] in 2017. In this paper, the behavior of the third leap Zagreb index under several graph operations like the Cartesian product, Corona product, neighborhood Corona product, lexicographic product, strong product, tensor product, symmetric difference and disjunction of two graphs is studied.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yasar Nacaroglu

The sigma coindex is defined as the sum of the squares of the differences between the degrees of all nonadjacent vertex pairs. In this paper, we propose some mathematical properties of the sigma coindex. Later, we present precise results for the sigma coindices of various graph operations such as tensor product, Cartesian product, lexicographic product, disjunction, strong product, union, join, and corona product.


Author(s):  
Dr. S. Nagarajan ◽  
◽  
G. Kayalvizhi ◽  
G. Priyadharsini ◽  
◽  
...  

In this paper we derive HF index of some graph operations containing join, Cartesian Product, Corona Product of graphs and compute the Y index of new operations of graphs related to the join of graphs.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050021
Author(s):  
Ghazale Ghazi ◽  
Freydoon Rahbarnia ◽  
Mostafa Tavakoli

This paper studies the 2-distance chromatic number of some graph product. A coloring of [Formula: see text] is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in the 2-distance coloring of [Formula: see text] is the 2-distance chromatic number and denoted by [Formula: see text]. In this paper, we obtain some upper and lower bounds for the 2-distance chromatic number of the rooted product, generalized rooted product, hierarchical product and we determine exact value for the 2-distance chromatic number of the lexicographic product.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 103-113 ◽  
Author(s):  
S. Hossein-Zadeh ◽  
A. Hamzeh ◽  
A.R. Ashrafi

Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, ? a real number, and W?(G) =?k?1 d(G, k)k?. W?(G) is called the Wiener-type invariant of G associated to real number ?. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyper- Wiener index and Tratch-Stankevich-Zefirov index are calculated. Some upper and lower bounds are also presented.


Author(s):  
Bommanahal Basavanagoud ◽  
Shreekant Patil

The modified second multiplicative Zagreb index of a connected graph G, denoted by $\prod_{2}^{*}(G)$, is defined as $\prod_{2}^{*}(G)=\prod \limits_{uv\in E(G)}[d_{G}(u)+d_{G}(v)]^{[d_{G}(u)+d_{G}(v)]}$ where $d_{G}(z)$ is the degree of a vertex z in G. In this paper, we present some upper bounds for the modified second multiplicative Zagreb index of graph operations such as union, join, Cartesian product, composition and corona product of graphs are derived.The modified second multiplicative Zagreb index of aconnected graph , denoted by , is defined as where is the degree of avertex in . In this paper, we present some upper bounds for themodified second multiplicative Zagreb index of graph operations such as union,join, Cartesian product, composition and corona product of graphs are derived.


Author(s):  
Wancang Ma ◽  
David Minda

AbstractLet S(p) be the family of holomorphic functions f defined on the unit disk D, normalized by f(0) = f1(0) – 1 = 0 and univalent in every hyperbolic disk of radius p. Let C(p) be the subfamily consisting of those functions which are convex univalent in every hyperbolic disk of radius p. For p = ∞ these become the classical families S and C of normalized univalent and convex functions, respectively. These families are linearly invariant in the sense of Pommerenke; a natural problem is to calculate the order of these linearly invariant families. More precisely, we give a geometrie proof that C(p) is the universal linearly invariant family of all normalized locally schlicht functions of order at most coth(2p). This gives a purely geometric interpretation for the order of a linearly invariant family. In a related matter, we characterize those locally schlicht functions which map each hyperbolically k-convex subset of D onto a euclidean convex set. Finally, we give upper and lower bounds on the order of the linearly invariant family S(p) and prove that this class is not equal to the universal linearly invariant family of any order.


Author(s):  
YOUNG JAE SIM ◽  
DEREK K. THOMAS

Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$ . We give sharp upper and lower bounds for $|a_{3}|-|a_{2}|$ and other related functionals for the subclass ${\mathcal{F}}_{O}(\unicode[STIX]{x1D706})$ of Ozaki close-to-convex functions.


2016 ◽  
Vol 59 (4) ◽  
pp. 705-720
Author(s):  
Yichao Chen ◽  
Xuluo Yin

AbstractThe thickness of a graph G is the minimum number of planar subgraphs whose union is G. A t-minimal graph is a graph of thickness t that contains no proper subgraph of thickness t. In this paper, upper and lower bounds are obtained for the thickness, t(G ⎕ H), of the Cartesian product of two graphs G and H, in terms of the thickness t(G) and t(H). Furthermore, the thickness of the Cartesian product of two planar graphs and of a t-minimal graph and a planar graph are determined. By using a new planar decomposition of the complete bipartite graph K4k,4k, the thickness of the Cartesian product of two complete bipartite graphs Kn,n and Kn,n is also given for n≠4k + 1.


Author(s):  
R. Khoeilar ◽  
A. Jahanbani

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. The general reduced second Zagreb index of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is any real number and [Formula: see text] is the degree of the vertex [Formula: see text] of [Formula: see text]. In this paper, the general reduced second Zagreb index of the Cartesian product, corona product, join of graphs and two new operations of graphs are computed.


Sign in / Sign up

Export Citation Format

Share Document