scholarly journals Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 910 ◽  
Author(s):  
Chunxin Bo ◽  
Xiaohong Zhang ◽  
Songtao Shao

Multi-attribute decision-making (MADM) is a part of management decision-making and an important branch of the modern decision theory and method. MADM focuses on the decision problem of discrete and finite decision schemes. Uncertain MADM is an extension and development of classical multi-attribute decision making theory. When the attribute value of MADM is shown by neutrosophic number, that is, the attribute value is complex data and needs three values to express, it is called the MADM problem in which the attribute values are neutrosophic numbers. However, in practical MADM problems, to minimize errors in individual decision making, we need to consider the ideas of many people and synthesize their opinions. Therefore, it is of great significance to study the method of attribute information aggregation. In this paper, we proposed a new theory—non-dual multi-granulation neutrosophic rough set (MS)—to aggregate multiple attribute information and solve a multi-attribute group decision-making (MGDM) problem where the attribute values are neutrosophic numbers. First, we defined two kinds of non-dual MS models, intersection-type MS and union-type MS. Additionally, their properties are studied. Then the relationships between MS, non-dual MS, neutrosophic rough set (NRS) based on neutrosophic intersection (union) relationship, and NRS based on neutrosophic transitive closure relation of union relationship are outlined, and a figure is given to show them directly. Finally, the definition of non-dual MS on two universes is given and we use it to solve a MGDM problem with a neutrosophic number as the attribute value.

Information ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 201 ◽  
Author(s):  
Jiongmei Mo ◽  
Han-Liang Huang

For multiple attribute decision making, ranking and information aggregation problems are increasingly receiving attention. In a normal neutrosophic number, the ranking method does not satisfy the ranking principle. Moreover, the proposed operators do not take into account the correlation between any aggregation arguments. In order to overcome the deficiencies of the existing ranking method, based on the nonnegative normal neutrosophic number, this paper redefines the score function, the accuracy function, and partial operational laws. Considering the correlation between any aggregation arguments, the dual generalized nonnegative normal neutrosophic weighted Bonferroni mean operator and dual generalized nonnegative normal neutrosophic weighted geometric Bonferroni mean operator were investigated, and their properties are presented. Here, these two operators are applied to deal with a multiple attribute decision making problem. Example results show that the proposed method is effective and superior.


2012 ◽  
Vol 226-228 ◽  
pp. 2222-2226 ◽  
Author(s):  
Wen Sheng Lü ◽  
Bin Zhang

In view of target attribute value for different sector number, moreover, also attaches a target constraint condition kind of mix sector multi-attribute decision making question, this paper presents set pair analysis decision-making method. Firstly this paper puts forward three typical interval type attribute value representation; Then using set pair analysis theory, the interval type attribute value unified convert the correlate form, Finally has given complex decision-making criterion function, which collected Conformity degree criteria and Criteria for membership degree. Through the construction plan changes decision-making example analysis shows that this method is a simple and effective method for solving multiple attribute decision making.


Author(s):  
JONATHAN LAWRY ◽  
HONGMEI HE

We propose label semantics as an integrated representation framework for probabilistic uncertainty and fuzziness in multiple-attribute decision making problems. Linguistic attribute hierarchies are then introduced as a means of modelling the complex and often imprecise functional relationships between low-level attributes or measurements and high-level decision or classification variables. Within this framework we introduce linguistic decision trees as a tool for information aggregation in multi-attribute decision problems and describe the process of information propagation through a hierarchy of linked decision trees. In addition, we consider the ranking of different alternatives or examples based on their linguistic descriptions of a high-level utility variable. Finally, we discuss how linguistic decision trees embedded in attribute hierarchies can be learnt from data.


2012 ◽  
Vol 482-484 ◽  
pp. 103-108
Author(s):  
Kai Ping Liu ◽  
Wen Chin Chen ◽  
Ting Cheng Chang

A function is proposed for descritizing and classifying the uncertain data of multi-attribute decision-making (MADM) datasets using a hybrid scheme incorporating fuzzy set theory, Rough Set (RS) theory and a modified form of the PBMF index function. The proposed MADM index function is used to extend the applicability of the single-attribute decision-making (SADM) function. The validity of the proposed MADM index function is evaluated by comparing the descritizing results obtained for a simple hypothetical function with those obtained using a SADM function and the conventional PBMF function.


Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 461-473 ◽  
Author(s):  
Sun Bingzhen ◽  
Ma Weimin

Purpose – The purpose of this paper is to present a new method for evaluation of emergency plans for unconventional emergency events by using the soft fuzzy rough set theory and methodology. Design/methodology/approach – In response to the problems of insufficient risk identification, incomplete and inaccurate data and different preference of decision makers, a new model for emergency plan evaluation is established by combining soft set theory with classical fuzzy rough set theory. Moreover, by combining the TOPSIS method with soft fuzzy rough set theory, the score value of the soft fuzzy lower and upper approximation is defined for the optimal object and the worst object. Finally, emergency plans are comprehensively evaluated according to the soft close degree of the soft fuzzy rough set theory. Findings – This paper presents a new perspective on emergency management decision making in unconventional emergency events. Also, the paper provides an effective model for evaluating emergency plans for unconventional events. Originality/value – The paper contributes to decision making in emergency management of unconventional emergency events. The model is useful for dealing with decision making with uncertain information.


Author(s):  
Jun Ye

The paper proposes a generalized ordered weighted simplified neutrosophic cosine similarity (GOWSNCS) measure by combining the cosine similarity measure of simplified neutrosophic sets (SNSs) with the generalized ordered weighted averaging (GOWA) operator and investigates its properties and special cases. Then, the author develops a simplified neutrosophic group decision-making method based on the GOWSNCS measure to handle multiple attribute group decision-making problems with simplified neutrosophic information. The prominent characteristics of the GOWSNCS measure are that it not only is a generalization of the cosine similarity measure but also considers the associated weights for attributes and decision makers in the aggregation of the cosine similarity measures of SNSs to alleviate the influence of unduly large or small similarities in the process of information aggregation. Finally, an illustrative example of investment alternatives is provided to demonstrate the application and effectiveness of the developed approach.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Jie Wang ◽  
Hui Gao ◽  
Guiwu Wei ◽  
Yu Wei

In the practical world, there commonly exist different types of multiple-attribute group decision making (MAGDM) problems with uncertain information. Symmetry among some attributes’ information that is already known and unknown, and symmetry between the pure attribute sets and fuzzy attribute membership sets, can be an effective way to solve this type of MAGDM problem. In this paper, we investigate four forms of information aggregation operators, including the Hamy mean (HM) operator, weighted HM (WHM) operator, dual HM (DHM) operator, and the dual-weighted HM (WDHM) operator with the q-rung interval-valued orthopair fuzzy numbers (q-RIVOFNs). Then, some extended aggregation operators, such as the q-rung interval-valued orthopair fuzzy Hamy mean (q-RIVOFHM) operator; q-rung interval-valued orthopairfuzzy weighted Hamy mean (q-RIVOFWHM) operator; q-rung interval-valued orthopair fuzzy dual Hamy mean (q-RIVOFDHM) operator; and q-rung interval-valued orthopair fuzzy weighted dual Hamy mean (q-RIVOFWDHM) operator are presented, and some of their precious properties are studied in detail. Finally, a real example for green supplier selection in green supply chain management is provided, to demonstrate the proposed approach and to verify its rationality and scientific nature.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1322
Author(s):  
Yaqing Kou ◽  
Xue Feng ◽  
Jun Wang

In this paper, a new multiple attribute decision-making (MADM) method under q-rung dual hesitant fuzzy environment from the perspective of aggregation operators is proposed. First, some aggregation operators are proposed for fusing q-rung dual hesitant fuzzy sets (q-RDHFSs). Afterwards, we present properties and some desirable special cases of the new operators. Second, a new entropy measure for q-RDHFSs is developed, which defines a method to calculate the weight information of aggregated q-rung dual hesitant fuzzy elements. Third, a novel MADM method is introduced to deal with decision-making problems under q-RDHFSs environment, wherein weight information is completely unknown. Finally, we present numerical example to show the effectiveness and performance of the new method. Additionally, comparative analysis is conducted to prove the superiorities of our new MADM method. This study mainly contributes to a novel method, which can help decision makes select optimal alternatives when dealing with practical MADM problems.


Sign in / Sign up

Export Citation Format

Share Document