scholarly journals Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1289
Author(s):  
Asnor ◽  
Mohd Yatim ◽  
Ibrahim

Variable order block backward differentiation formulae (VOHOBBDF) method is employedfor treating numerically higher order Ordinary Differential Equations (ODEs). In this respect, the purpose of this research is to treat initial value problem (IVP) of higher order stiff ODEs directly. BBDF method is symmetrical to BDF method but it has the advantage of producing more than one solutions simultaneously. Order three, four, and five of VOHOBBDF are developed and implemented as a single code by applying adaptive order approach to enhance the computational efficiency. This approach enables the selection of the least computed LTE among the three orders of VOHOBBDF and switch the code to the method that produces the least LTE for the next step. A few numerical experiments on the focused problem were performed to investigate the numerical efficiency of implementing VOHOBBDF methods in a single code. The analysis of the experimental results reveals the numerical efficiency of this approach as it yielded better performances with less computational effort when compared with built-in stiff Matlab codes. The superior performances demonstrated by the application of adaptive orders selection in a single code thus indicate its reliability as a direct solver for higher order stiff ODEs.

Author(s):  
Ahmad Fadly Nurullah Rasedee ◽  
Mohammad Hasan Abdul Sathar ◽  
Siti Raihana Hamzah ◽  
Norizarina Ishak ◽  
Wong Tze Jin ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmad Fadly Nurullah Rasedee ◽  
Mohamed bin Suleiman ◽  
Zarina Bibi Ibrahim

The current numerical techniques for solving a system of higher order ordinary differential equations (ODEs) directly calculate the integration coefficients at every step. Here, we propose a method to solve higher order ODEs directly by calculating the integration coefficients only once at the beginning of the integration and if required once more at the end. The formulae will be derived in terms of backward difference in a constant step size formulation. The method developed will be validated by solving some higher order ODEs directly using variable order step size. To simplify the evaluations of the integration coefficients, we find the relationship between various orders. The results presented confirmed our hypothesis.


Author(s):  
Peter E Kloeden ◽  
Arnulf Jentzen

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) with a stochastic process in their vector field. They can be analysed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable, so traditional numerical schemes for ODEs do not achieve their usual order of convergence when applied to RODEs. Nevertheless deterministic calculus can still be used to derive higher order numerical schemes for RODEs via integral versions of implicit Taylor-like expansions. The theory is developed systematically here and applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes.


Sign in / Sign up

Export Citation Format

Share Document