scholarly journals A New Dataset and Deep Residual Spectral Spatial Network for Hyperspectral Image Classification

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 561 ◽  
Author(s):  
Yiming Xue ◽  
Dan Zeng ◽  
Fansheng Chen ◽  
Yueming Wang ◽  
Zhijiang Zhang

Due to the limited varieties and sizes of existing public hyperspectral image (HSI) datasets, the classification accuracies are higher than 99% with convolutional neural networks (CNNs). In this paper, we presented a new HSI dataset named Shandong Feicheng, whose size and pixel quantity are much larger. It also has a larger intra-class variance and a smaller inter-class variance. State-of-the-art methods were compared on it to verify its diversity. Otherwise, to reduce overfitting caused by the imbalance between high dimension and small quantity of labeled HSI data, existing CNNs for HSI classification are relatively shallow and suffer from low capacity of feature learning. To solve this problem, we proposed an HSI classification framework named deep residual spectral spatial setwork (DRSSN). By using shortcut connection structure, which is an asymmetry structure, DRSSN can be deeper to extract features with better discrimination. In addition, to alleviate insufficient training caused by unbalanced sample sizes between easily and hard classified samples, we proposed a novel training loss function named sample balanced loss, which allocated weights to the losses of samples according to their prediction confidence. Experimental results on two popular datasets and our proposed dataset showed that our proposed network could provide competitive results compared with state-of-the-art methods.

2019 ◽  
Vol 10 (1) ◽  
pp. 60 ◽  
Author(s):  
Shengwei Zhou ◽  
Caikou Chen ◽  
Guojiang Han ◽  
Xielian Hou

Learning large-margin face features whose intra-class variance is small and inter-class diversity is one of important challenges in feature learning applying Deep Convolutional Neural Networks (DCNNs) for face recognition. Recently, an appealing line of research is to incorporate an angular margin in the original softmax loss functions for obtaining discriminative deep features during the training of DCNNs. In this paper we propose a novel loss function, termed as double additive margin Softmax loss (DAM-Softmax). The presented loss has a clearer geometrical explanation and can obtain highly discriminative features for face recognition. Extensive experimental evaluation of several recent state-of-the-art softmax loss functions are conducted on the relevant face recognition benchmarks, CASIA-Webface, LFW, CALFW, CPLFW, and CFP-FP. We show that the proposed loss function consistently outperforms the state-of-the-art.


Sign in / Sign up

Export Citation Format

Share Document