scholarly journals Robust Finite-Time Control of Linear System with Non-Differentiable Time-Varying Delay

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 680
Author(s):  
Wanwisa Puangmalai ◽  
Jirapong Puangmalai ◽  
Thaned Rojsiraphisal

Practical systems such as hybrid power systems are currently implemented around the world. In order to get the system to work properly, the systems usually require their behavior to be maintained or state values to stay within a certain threshold. However, it is difficult to form a perfect mathematical model for describing behavior of the practical systems since there may be some information (uncertainties) that is not observed. Thus, in this article, we studied the stability of an uncertain linear system with a non-differentiable time-varying delay. We constructed Lyapunov-Krasovskii functionals (LKFs) containing several symmetric positive definite matrices to obtain robust finite-time stability (RFTS) and stabilization (RFTU) of the uncertain linear system. With the controller and uncertainties in the considered system, there exist nonlinear terms occurring in the formulation process. Past research handled these nonlinear terms as new variables but this led to some difficulty from a computation point of view. Instead, we applied a novel approach via Cauchy-like matrix inequalities to handle these difficulties. In the end, we present three numerical simulations to show the effectiveness of our proposed theory.

2020 ◽  
Vol 225 (02) ◽  
pp. 52-57
Author(s):  
Phạm Ngọc Anh ◽  
Nguyễn Trường Thanh ◽  
Hoàng Ngọc Tùng

Bài báo này khảo sát tính ổn định hữu hạn của một lớp hệ quy mô lớn cấp phân số có trễ biến thiên và nhiễu phi tuyến. Sử dụng bất đẳng thức Gronwall tổng quát, một điều kiện đủ cho ổn định hữu hạn của các hệ này được thiết lập thông qua hàm Mittag-Leffler. Kết quả thu được sau đó được áp dụng cho hệ bất định và hệ không ôtonom có trễ biến thiên và nhiễu phi tuyến.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lihong Yan ◽  
Junmin Li

In this paper, we investigate finite-time synchronization problems of complex dynamical networks with different dimensions of nodes, which contain unknown periodically coupling structures and bounded time-varying delay. Based on finite-time stability theory, the inequality techniques, and the properties of Kronecker production of matrices, some useful finite-time synchronization criteria for complex dynamical network with unknown periodical couplings have been obtained. In addition, with proper adaptive periodical learning law designed, the unknown periodical couplings have been estimated successfully. Finally, some simulation examples are performed to verify the theoretical findings.


Sign in / Sign up

Export Citation Format

Share Document